在使用slim之類的tensorflow自帶框架的時候通常默認的數據格式就是TFRecords,在訓練的時候使用TFRecords中數據的流程以下:使用input pipeline讀取tfrecords文件/其餘支持的格式,而後隨機亂序,生成文件序列,讀取並解碼數據,輸入模型訓練。html
若是有一串jpg圖片地址和相應的標籤:images
和labels
python
存入TFRecords文件須要數據先存入名爲example的protocol buffer,而後將其serialize成爲string才能寫入。example中包含features,用於描述數據類型:bytes,float,int64。框架
import tensorflow as tf import cv2 def _int64_feature(value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def _bytes_feature(value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=value)) train_filename = 'train.tfrecords' with tf.python_io.TFRecordWriter(train_filename) as tfrecord_writer: for i in range(len(images)): # read in image data by tf img_data = tf.gfile.FastGFile(images[i], 'rb').read() # image data type is string label = labels[i] # get width and height of image image_shape = cv2.imread(images[i]).shape width = image_shape[1] height = image_shape[0] # create features feature = {'train/image': _bytes_feature(img_data), 'train/label': _int64_feature(label), # label: integer from 0-N 'train/height': _int64_feature(height), 'train/width': _int64_feature(width)} # create example protocol buffer example = tf.train.Example(features=tf.train.Features(feature=feature)) # serialize protocol buffer to string tfrecord_writer.write(example.SerializeToString()) tfrecord_writer.close()
首先用tf.train.string_input_producer
讀取tfrecords文件的list創建FIFO序列,能夠申明num_epoches和shuffle參數表示須要讀取數據的次數以及時候將tfrecords文件讀入順序打亂,而後定義TFRecordReader讀取上面的序列返回下一個record,用tf.parse_single_example
對讀取到TFRecords文件進行解碼,根據保存的serialize example和feature字典返回feature所對應的值。此時得到的值都是string,須要進一步解碼爲所需的數據類型。把圖像數據的string reshape成原始圖像後能夠進行preprocessing操做。此外,還能夠經過tf.train.batch
或者tf.train.shuffle_batch
將圖像生成batch序列。函數
因爲tf.train
函數會在graph中增長tf.train.QueueRunner
類,而這些類有一系列的enqueue選項使一個隊列在一個線程裏運行。爲了填充隊列就須要用tf.train.start_queue_runners
來爲全部graph中的queue runner啓動線程,而爲了管理這些線程就須要一個tf.train.Coordinator
來在合適的時候終止這些線程。線程
import tensorflow as tf import matplotlib.pyplot as plt data_path = 'train.tfrecords' with tf.Session() as sess: # feature key and its data type for data restored in tfrecords file feature = {'train/image': tf.FixedLenFeature([], tf.string), 'train/label': tf.FixedLenFeature([], tf.int64), 'train/height': tf.FixedLenFeature([], tf.int64), 'train/width': tf.FixedLenFeature([], tf.int64)} # define a queue base on input filenames filename_queue = tf.train.string_input_producer([data_path], num_epoches=1) # define a tfrecords file reader reader = tf.TFRecordReader() # read in serialized example data _, serialized_example = reader.read(filename_queue) # decode example by feature features = tf.parse_single_example(serialized_example, features=feature) image = tf.image.decode_jpeg(features['train/image']) image = tf.image.convert_image_dtype(image, dtype=tf.float32) # convert dtype from unit8 to float32 for later resize label = tf.cast(features['train/label'], tf.int64) height = tf.cast(features['train/height'], tf.int32) width = tf.cast(features['train/width'], tf.int32) # restore image to [height, width, 3] image = tf.reshape(image, [height, width, 3]) # resize image = tf.image.resize_images(image, [224, 224]) # create bathch images, labels = tf.train.shuffle_batch([image, label], batch_size=10, capacity=30, num_threads=1, min_after_dequeue=10) # capacity是隊列的最大容量,num_threads是dequeue後最小的隊列大小,num_threads是進行隊列操做的線程數。 # initialize global & local variables init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) sess.run(init_op) # create a coordinate and run queue runner objects coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for batch_index in range(3): batch_images, batch_labels = sess.run([images, labels]) for i in range(10): plt.imshow(batch_images[i, ...]) plt.show() print "Current image label is: ", batch_lables[i] # close threads coord.request_stop() coord.join(threads) sess.close()