Given an array of integers A and let n to be its length. Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a "rotation function" F on A as follow: F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]. Calculate the maximum value of F(0), F(1), ..., F(n-1). Note: n is guaranteed to be less than 105. Example: A = [4, 3, 2, 6] F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25 F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16 F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23 F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26 So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
Bk表明對數組A在位置k上進行順時針的旋轉後生成的數組。F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
,要求返回得到的最大的F(k)的值。面試
按照題目的要求,執行兩次循環便可以得到F(k)的全部值,只須要從中比較最大值便可。數組
public int maxRotateFunction(int[] A) { if(A == null || A.length == 0) return 0; int max = Integer.MIN_VALUE; for(int i = 0 ; i < A.length ; i++) { int value = 0; for(int j = 0 ; i < A.length ; j++) { value += j * A[(j+i)%A.length]; } max = Math.max(value, max); } return max; }
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1] F(k-1) = 0 * Bk-1[0] + 1 * Bk-1[1] + ... + (n-1) * Bk-1[n-1] F(k) = F(k-1) + sum - n*Bk[0] k = 0 Bk[0] = A[0] k = 1 Bk[0] = A[len-1] k = 2 Bk[0] = A[len-2] ...
public int maxRotateFunction(int[] A) { if(A == null || A.length == 0) return 0; int F = 0; int sum = 0; for(int i = 0 ; i<A.length ; i++) { sum += A[i]; F += i * A[i]; } int max = F; for(int i = 1 ; i<A.length ; i++) { F += sum - A.length * A[A.length - i]; max = Math.max(F, max); } return max; }
想要了解更多開發技術,面試教程以及互聯網公司內推,歡迎關注個人微信公衆號!將會不按期的發放福利哦~微信