Linux網絡地址轉換分析 地址轉換用來改變源/目的端口,是netfilter的一部分,也是經過hook點上註冊相應的結構來工做. Nat註冊的hook點和conntrack相同,只是優先級不一樣,數據包進入netfilter以後先通過conntrack,再通過nat. 而在數據包離開netfilter以前先通過nat,再通過conntrack. 在ip_conntrack結構中有爲nat定義的一個nat結構,爲何把這個結構放在ip_conntrack裏呢。 簡單的說,對於非初始化鏈接的數據包,即後續的數據包,一旦肯定它屬於某個鏈接,則能夠直接利用鏈接狀態裏的nat信息來進行地址轉換; 而對於初始數據包,必須在nat表裏查找相應的規則,肯定了地址轉換的內容後,將這些信息放到鏈接跟蹤結構的nat參量裏面,供後續的數據包使用. struct ip_conntrack { ...... #ifdef CONFIG_IP_NF_NAT_NEEDED struct { struct ip_nat_info info; union ip_conntrack_nat_help help; #if defined(CONFIG_IP_NF_TARGET_MASQUERADE) || defined(CONFIG_IP_NF_TARGET_MASQUERADE_MODULE) int masq_index; #endif } nat; #endif /* CONFIG_IP_NF_NAT_NEEDED */ ...... }; struct ip_nat_info { struct list_head bysource; struct ip_nat_seq seq[IP_CT_DIR_MAX]; }; 下面咱們來看初始化函數. static int __init ip_nat_standalone_init(void) //net/ipv4/netfilter/ip_nat_standalone.c { int ret = 0; need_conntrack(); //空函數 #ifdef CONFIG_XFRM //IPSEC相關,咱們忽略 BUG_ON(ip_nat_decode_session != NULL); ip_nat_decode_session = nat_decode_session; #endif //初始化nat規則 ret = ip_nat_rule_init(); if (ret < 0) { printk("ip_nat_init: can't setup rules.\n"); goto cleanup_decode_session; } //註冊hook函數 ret = nf_register_hooks(ip_nat_ops, ARRAY_SIZE(ip_nat_ops)); if (ret < 0) { printk("ip_nat_init: can't register hooks.\n"); goto cleanup_rule_init; } return ret; ...... } 規則初始化 static struct ipt_target ipt_snat_reg = { .name = "SNAT", .target = ipt_snat_target, .targetsize = sizeof(struct ip_nat_multi_range_compat), .table = "nat", .hooks = 1 << NF_IP_POST_ROUTING, .checkentry = ipt_snat_checkentry, }; static struct ipt_target ipt_dnat_reg = { .name = "DNAT", .target = ipt_dnat_target, .targetsize = sizeof(struct ip_nat_multi_range_compat), .table = "nat", .hooks = (1 << NF_IP_PRE_ROUTING) | (1 << NF_IP_LOCAL_OUT), .checkentry = ipt_dnat_checkentry, }; int __init ip_nat_rule_init(void) { int ret; //註冊nat表和參照模板(第二個參數),初始化表中字段(與iptable有關) ret = ipt_register_table(&nat_table, &nat_initial_table.repl); //參看Linux Netfilter實現機制和擴展技術 if (ret != 0) return ret; //把這個結構鏈接到一個結構中的struct list_head target連表中 ret = ipt_register_target(&ipt_snat_reg); if (ret != 0) goto unregister_table; ret = ipt_register_target(&ipt_dnat_reg); if (ret != 0) goto unregister_snat; return ret; ...... } 在看另外一個文件的初始化 static int __init ip_nat_init(void) //net/ipv4/netfilter/ip_nat_core.c { size_t i; ip_nat_htable_size = ip_conntrack_htable_size; //nat的hash表大小和conntrack的hash表相同 bysource = vmalloc(sizeof(struct list_head) * ip_nat_htable_size); //初始化了一個叫bysource的全局鏈表指針 if (!bysource) return -ENOMEM; write_lock_bh(&ip_nat_lock); for (i = 0; i < MAX_IP_NAT_PROTO; i++) ip_nat_protos[i] = &ip_nat_unknown_protocol; //註冊一些內建的協議,是用來維護nat模塊中用到的協議結構ip_nat_protocol的全局鏈表. ip_nat_protos[IPPROTO_TCP] = &ip_nat_protocol_tcp; ip_nat_protos[IPPROTO_UDP] = &ip_nat_protocol_udp; ip_nat_protos[IPPROTO_ICMP] = &ip_nat_protocol_icmp; write_unlock_bh(&ip_nat_lock); for (i = 0; i < ip_nat_htable_size; i++) { //初始化鏈表 INIT_LIST_HEAD(&bysource[i]); } //初始化一個ip_conntrack_destroyed函數,ip_nat_cleanup_conntrack(struct ip_conntrack *conn) 的做用是在bysource鏈表中刪除conn對應的節點. ip_conntrack_destroyed = &ip_nat_cleanup_conntrack; //加上這個標誌後nat將跳過這個僞造的conntrack ip_conntrack_untracked.status |= IPS_NAT_DONE_MASK; return 0; } 咱們仍是假定從此遇到的包所有是tcp協議的. 看下面協議實現部分. 下面咱們仍是一個一個來看這些hook函數. static struct nf_hook_ops ip_nat_ops[] = { /* Before packet filtering, change destination */ { .hook = ip_nat_in, .owner = THIS_MODULE, .pf = PF_INET, .hooknum = NF_IP_PRE_ROUTING, .priority = NF_IP_PRI_NAT_DST, }, /* After packet filtering, change source */ { .hook = ip_nat_out, .owner = THIS_MODULE, .pf = PF_INET, .hooknum = NF_IP_POST_ROUTING, .priority = NF_IP_PRI_NAT_SRC, }, /* After conntrack, adjust sequence number */ { .hook = ip_nat_adjust, .owner = THIS_MODULE, .pf = PF_INET, .hooknum = NF_IP_POST_ROUTING, .priority = NF_IP_PRI_NAT_SEQ_ADJUST, }, /* Before packet filtering, change destination */ { .hook = ip_nat_local_fn, .owner = THIS_MODULE, .pf = PF_INET, .hooknum = NF_IP_LOCAL_OUT, .priority = NF_IP_PRI_NAT_DST, }, /* After packet filtering, change source */ { .hook = ip_nat_fn, .owner = THIS_MODULE, .pf = PF_INET, .hooknum = NF_IP_LOCAL_IN, .priority = NF_IP_PRI_NAT_SRC, }, /* After conntrack, adjust sequence number */ { .hook = ip_nat_adjust, .owner = THIS_MODULE, .pf = PF_INET, .hooknum = NF_IP_LOCAL_IN, .priority = NF_IP_PRI_NAT_SEQ_ADJUST, }, }; NF_IP_PRE_ROUTING,在報文做路由之前執行; NF_IP_FORWARD,在報文轉向另外一個NIC之前執行; NF_IP_POST_ROUTING,在報文流出之前執行; NF_IP_LOCAL_IN,在流入本地的報文做路由之後執行; NF_IP_LOCAL_OUT,在本地報文作流出路由前執行; NF_ACCEPT :繼續正常的報文處理; NF_DROP :將報文丟棄; NF_STOLEN :由鉤子函數處理了該報文,不要再繼續傳送; NF_QUEUE :將報文入隊,一般交由用戶程序處理; NF_REPEAT :再次調用該鉤子函數。 NF_STOP :中止檢測,再也不進行下一個Hook函數 static unsigned int ip_nat_in(unsigned int hooknum, struct sk_buff **pskb, const struct net_device *in, const struct net_device *out, int (*okfn)(struct sk_buff *)) { unsigned int ret; u_int32_t daddr = (*pskb)->nh.iph->daddr; ret = ip_nat_fn(hooknum, pskb, in, out, okfn); if (ret != NF_DROP && ret != NF_STOLEN && daddr != (*pskb)->nh.iph->daddr) { //目的地址已經改變 dst_release((*pskb)->dst); //丟棄原來的路由信息 (*pskb)->dst = NULL; } return ret; } //主要的通用函數 static unsigned int ip_nat_fn(unsigned int hooknum, struct sk_buff **pskb, const struct net_device *in, const struct net_device *out, int (*okfn)(struct sk_buff *)) { struct ip_conntrack *ct; enum ip_conntrack_info ctinfo; struct ip_nat_info *info; //#define HOOK2MANIP(hooknum) ((hooknum) != NF_IP_POST_ROUTING && (hooknum) != NF_IP_LOCAL_IN) //根據所在的hook點判斷轉換類型是源地址轉換仍是目的地址轉換,爲0(IP_NAT_MANIP_SRC)表示源地址轉換,爲1(IP_NAT_MANIP_DST)表示目的地址轉換 enum ip_nat_manip_type maniptype = HOOK2MANIP(hooknum); //取得數據包的鏈接狀態 ct = ip_conntrack_get(*pskb, &ctinfo); //數據包沒有被conntrack if (ct == &ip_conntrack_untracked) return NF_ACCEPT; //這個函數有兩種不一樣的行爲,取決於傳給它輸入包仍是輸出包.對於輸入包,它使傳輸層硬件校驗和無效.對於輸出包,它計算傳輸層校驗和 if ((*pskb)->ip_summed == CHECKSUM_HW) if (skb_checksum_help(*pskb, (out == NULL))) return NF_DROP; //若是找不到對應鏈接,則應該直接放行它,而再也不對其進行轉換處理,特別地,ICMP重定向報文將會被丟棄 if (!ct) { if ((*pskb)->nh.iph->protocol == IPPROTO_ICMP) { struct icmphdr _hdr, *hp; hp = skb_header_pointer(*pskb, (*pskb)->nh.iph->ihl*4, sizeof(_hdr), &_hdr); if (hp != NULL && hp->type == ICMP_REDIRECT) return NF_DROP; } return NF_ACCEPT; } switch (ctinfo) { //判斷鏈接狀態,調用相應的處理函數 case IP_CT_RELATED: case IP_CT_RELATED+IP_CT_IS_REPLY: if ((*pskb)->nh.iph->protocol == IPPROTO_ICMP) { if (!ip_nat_icmp_reply_translation(pskb, ct, maniptype, CTINFO2DIR(ctinfo))) return NF_DROP; else return NF_ACCEPT; } case IP_CT_NEW: //初始鏈接的數據包 info = &ct->nat.info; //測試ct->status中的位判斷是否已經初始化conntrack中nat部分 if (!ip_nat_initialized(ct, maniptype)) { unsigned int ret; if (unlikely(is_confirmed(ct))) ret = alloc_null_binding_confirmed(ct, info, hooknum); else if (hooknum == NF_IP_LOCAL_IN) //這是在沒有找到轉換規則的時候就作一個空轉換,例如若是咱們是但願在數據包外出的時候修改源IP, //那麼在prerouting的時候就找不到規則,這時候就會發生空轉換的動做,其實這個做用一是爲了保持流程的統一, //即無論有沒有規則都要調用ip_nat_setup_info(),第二個做用是這樣調用了ip_nat_setup_info之後, //會作一些NAT的輔助工做,也就是說基本信息的記錄和轉換信息由不一樣的模塊來負責 ret = alloc_null_binding(ct, info, hooknum); else //包狀態爲NEW,而且沒有作過NAT轉化的包纔會經過ip_nat_rule_find()查找並生成NAT規則信息 ret = ip_nat_rule_find(pskb, hooknum, in, out, ct, info); if (ret != NF_ACCEPT) { return ret; } } else DEBUGP("Already setup manip %s for ct %p\n", maniptype == IP_NAT_MANIP_SRC ? "SRC" : "DST", ct); break; default: //看見syn+ack後ctinfo 應該是IP_CT_ESTABLISHED+IP_CT_IS_REPLY 第二次握手 //看見ack 後 ctinfo 應該是IP_CT_ESTABLISHED 第三次握手 IP_NF_ASSERT(ctinfo == IP_CT_ESTABLISHED || ctinfo == (IP_CT_ESTABLISHED+IP_CT_IS_REPLY)); info = &ct->nat.info; } IP_NF_ASSERT(info); //修改數據包內容 return ip_nat_packet(ct, ctinfo, hooknum, pskb); } int ip_nat_rule_find(struct sk_buff **pskb, unsigned int hooknum, const struct net_device *in, const struct net_device *out, struct ip_conntrack *ct, struct ip_nat_info *info) { int ret; //經過hooknum在iptable表獲得檢查點對應的默認的chain表(chain是在某個檢查點上所引用規則的集合,規則由ipt_entry表示) //ipt_do_table查找表中的全部ipt_entry,若是match全都匹配,則調用target函數 //此時的target函數就是在nat初始化時註冊的ipt_snat_target和ipt_dnat_target //例如添加iptables -t nat -A PREROUTING -p TCP -i eth0 -d 10.0.0.1 --dport 80 -j DNAT --to-destination 192.168.0.1 //其中用到了nat 表和 DNAT,看上面的初始化函數 ret = ipt_do_table(pskb, hooknum, in, out, &nat_table, NULL); if (ret == NF_ACCEPT) { if (!ip_nat_initialized(ct, HOOK2MANIP(hooknum))) ret = alloc_null_binding(ct, info, hooknum); } return ret; } //咱們看一下這個註冊的snat_target static unsigned int ipt_snat_target(struct sk_buff **pskb, const struct net_device *in, const struct net_device *out, unsigned int hooknum, const struct ipt_target *target, const void *targinfo, void *userinfo) { struct ip_conntrack *ct; enum ip_conntrack_info ctinfo; const struct ip_nat_multi_range_compat *mr = targinfo; //源地址轉換隻能在POST_ROUTING中 IP_NF_ASSERT(hooknum == NF_IP_POST_ROUTING); //獲取鏈接信息 ct = ip_conntrack_get(*pskb, &ctinfo); // 只有新鏈接才進行NAT info的創建 // targinfo實際是struct ip_nat_multi_range_compat結構指針,記錄轉換後的地址、端口等信息 IP_NF_ASSERT(ct && (ctinfo == IP_CT_NEW || ctinfo == IP_CT_RELATED || ctinfo == IP_CT_RELATED + IP_CT_IS_REPLY)); IP_NF_ASSERT(out); return ip_nat_setup_info(ct, &mr->range[0], hooknum); } unsigned int ip_nat_setup_info(struct ip_conntrack *conntrack, const struct ip_nat_range *range, unsigned int hooknum) { struct ip_conntrack_tuple curr_tuple, new_tuple; struct ip_nat_info *info = &conntrack->nat.info; int have_to_hash = !(conntrack->status & IPS_NAT_DONE_MASK); enum ip_nat_manip_type maniptype = HOOK2MANIP(hooknum); //對當前狀態的應答方向的tuple調用invert_tuplepr取反,獲得一個curr_tupe, //若是以前沒有進行過地址或端口轉換,一般這裏獲得的curr_tupe就等於初始方向的tuple invert_tuplepr(&curr_tuple, &conntrack->tuplehash[IP_CT_DIR_REPLY].tuple); //參看ip_conntrack實現 //找一個未使用的進行了轉換後的tuple結構參數,其中參數range是轉換後的ip地址和端口範圍 //new_tuple保持轉換後的鏈接原始方向的tuple get_unique_tuple(&new_tuple, &curr_tuple, range, conntrack, maniptype); //檢查轉換先後的tuple值是否相同,new_tuple是NAT後的新的原始方向的tuple if (!ip_ct_tuple_equal(&new_tuple, &curr_tuple)) { struct ip_conntrack_tuple reply; //創建鏈接地址轉換後的反向的tuple invert_tuplepr(&reply, &new_tuple); //修改鏈接中的響應方向的tuple值 //即conntrack->tuplehash[IP_CT_DIR_REPLY].tuple = *reply ip_conntrack_alter_reply(conntrack, &reply); //設置標誌 if (maniptype == IP_NAT_MANIP_SRC) conntrack->status |= IPS_SRC_NAT; else conntrack->status |= IPS_DST_NAT; } if (have_to_hash) { //鏈接到基於起始方向源IP的HASH鏈表中 unsigned int srchash = hash_by_src(&conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple); write_lock_bh(&ip_nat_lock); list_add(&info->bysource, &bysource[srchash]); write_unlock_bh(&ip_nat_lock); } //在鏈接的狀態值中設置源或目的NAT完成標誌 if (maniptype == IP_NAT_MANIP_DST) set_bit(IPS_DST_NAT_DONE_BIT, &conntrack->status); else set_bit(IPS_SRC_NAT_DONE_BIT, &conntrack->status); return NF_ACCEPT; } static void get_unique_tuple(struct ip_conntrack_tuple *tuple, const struct ip_conntrack_tuple *orig_tuple, const struct ip_nat_range *range, struct ip_conntrack *conntrack, enum ip_nat_manip_type maniptype) { struct ip_nat_protocol *proto; //若是是作SNAT,而且此源地址(包括ip地址和端口等信息)已經作過轉換,並且這樣產生的tuple仍然是惟一的話,那麼轉換成功結束 if (maniptype == IP_NAT_MANIP_SRC) { if (find_appropriate_src(orig_tuple, tuple, range)) {//找到合適的源地址的NAT if (!ip_nat_used_tuple(tuple, conntrack)) return; } } *tuple = *orig_tuple; //選擇一個最少使用的ip find_best_ips_proto(tuple, range, conntrack, maniptype); //查找協議看上面註冊部分 proto = ip_nat_proto_find_get(orig_tuple->dst.protonum); //若是端口不限或在指定的端口範圍內,而且此tuple惟一,那麼轉換成功 if ((!(range->flags & IP_NAT_RANGE_PROTO_SPECIFIED) || proto->in_range(tuple, maniptype, &range->min, &range->max)) && !ip_nat_used_tuple(tuple, conntrack)) { ip_nat_proto_put(proto); return; } //作端口轉換,看下面協議實現部分 proto->unique_tuple(tuple, range, maniptype, conntrack); ip_nat_proto_put(proto); } static void find_best_ips_proto(struct ip_conntrack_tuple *tuple, const struct ip_nat_range *range, const struct ip_conntrack *conntrack, enum ip_nat_manip_type maniptype) { u_int32_t *var_ipp; u_int32_t minip, maxip, j; //就沒做 ip NAT if (!(range->flags & IP_NAT_RANGE_MAP_IPS)) return; if (maniptype == IP_NAT_MANIP_SRC) //指向要修改的ip var_ipp = &tuple->src.ip; else var_ipp = &tuple->dst.ip; if (range->min_ip == range->max_ip) { //只有一個選擇 *var_ipp = range->min_ip; return; } //選擇一個ip minip = ntohl(range->min_ip); maxip = ntohl(range->max_ip); j = jhash_2words(tuple->src.ip, tuple->dst.ip, 0); *var_ipp = htonl(minip + j % (maxip - minip + 1)); } static unsigned int ipt_dnat_target(struct sk_buff **pskb, const struct net_device *in, const struct net_device *out, unsigned int hooknum, const struct ipt_target *target, const void *targinfo, void *userinfo) { struct ip_conntrack *ct; enum ip_conntrack_info ctinfo; const struct ip_nat_multi_range_compat *mr = targinfo; ct = ip_conntrack_get(*pskb, &ctinfo); //鏈接必須是新的和有效的 IP_NF_ASSERT(ct && (ctinfo == IP_CT_NEW || ctinfo == IP_CT_RELATED)); if (hooknum == NF_IP_LOCAL_OUT && mr->range[0].flags & IP_NAT_RANGE_MAP_IPS) warn_if_extra_mangle((*pskb)->nh.iph->daddr, mr->range[0].min_ip); //仍是調用這函數 return ip_nat_setup_info(ct, &mr->range[0], hooknum); } 下面咱們仍是繼續ip_nat_fn函數,在最後一步調用 unsigned int ip_nat_packet(struct ip_conntrack *ct, enum ip_conntrack_info ctinfo, unsigned int hooknum, struct sk_buff **pskb) { enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo); //方向 unsigned long statusbit; enum ip_nat_manip_type mtype = HOOK2MANIP(hooknum); if (mtype == IP_NAT_MANIP_SRC) //是源仍是目的nat statusbit = IPS_SRC_NAT; else statusbit = IPS_DST_NAT; //翻轉映射位若是是應答方向, 源改成目的,目的改成源 if (dir == IP_CT_DIR_REPLY) statusbit ^= IPS_NAT_MASK; //異或 相同爲0 不一樣爲1 //ct->status中NAT類型是在創建NAT信息的ip_nat_setup_info()函數中設置的 if (ct->status & statusbit) { struct ip_conntrack_tuple target; //根據當前數據的反方向tuple,獲取轉換後的地址端口的tuple信息到target中 //若是dir是原始方向那麼獲得的target是修改後的原始方向 invert_tuplepr(&target, &ct->tuplehash[!dir].tuple); //根據target中信息修改當前包中的信息 if (!manip_pkt(target.dst.protonum, pskb, 0, &target, mtype)) return NF_DROP; } } static int manip_pkt(u_int16_t proto, struct sk_buff **pskb, unsigned int iphdroff, const struct ip_conntrack_tuple *target, enum ip_nat_manip_type maniptype) { struct iphdr *iph; struct ip_nat_protocol *p; //因爲2.6.1*內核netfilter架構重組IP包後不進行線性化操做,因此不能直接用skb中的協議頭獲取各協議字段頭信息, //必須用skb_header_pointer()函數來獲取.一樣,在進行NAT操做時,對數據的修改也不能直接修改,必須採用新函數預先進行處理,使skb包可寫 //這個函數就是實現此功能 if(!skb_make_writable(pskb, iphdroff + sizeof(*iph))) return 0; //獲取ip頭 iph = (void *)(*pskb)->data + iphdroff; //查找相關協議,看初始化時怎樣註冊的協議 p = ip_nat_proto_find_get(proto); //調用協議函數處理數據包,看下面協議實現部分 if (!p->manip_pkt(pskb, iphdroff, target, maniptype)) { ip_nat_proto_put(p); return 0; } ip_nat_proto_put(p); //根據NAT類型,基於新地址重新計算校驗和,而後修改源或目的IP地址 if (maniptype == IP_NAT_MANIP_SRC) { iph->check = ip_nat_cheat_check(~iph->saddr, target->src.ip, iph->check); iph->saddr = target->src.ip; } else { iph->check = ip_nat_cheat_check(~iph->daddr, target->dst.ip, iph->check); iph->daddr = target->dst.ip; } return 1; } 咱們繼續看NF_IP_POST_ROUTING的hook static unsigned int ip_nat_out(unsigned int hooknum, struct sk_buff **pskb, const struct net_device *in, const struct net_device *out, int (*okfn)(struct sk_buff *)) { ...... //忽略IPSEC unsigned int ret; //檢測原始數據包 if ((*pskb)->len < sizeof(struct iphdr) || (*pskb)->nh.iph->ihl * 4 < sizeof(struct iphdr)) return NF_ACCEPT; ret = ip_nat_fn(hooknum, pskb, in, out, okfn); //已經看到過 ...... return ret; } 咱們繼續看NF_IP_POST_ROUTING的 static unsigned int ip_nat_adjust(unsigned int hooknum, struct sk_buff **pskb, const struct net_device *in, const struct net_device *out, int (*okfn)(struct sk_buff *)) { struct ip_conntrack *ct; enum ip_conntrack_info ctinfo; //獲取conntrack ct = ip_conntrack_get(*pskb, &ctinfo); if (ct && test_bit(IPS_SEQ_ADJUST_BIT, &ct->status)) { //調整tcp序號,從新計算效驗和等(忽略) if (!ip_nat_seq_adjust(pskb, ct, ctinfo)) return NF_DROP; } return NF_ACCEPT; } NF_IP_LOCAL_OUT的hook static unsigned int ip_nat_local_fn(unsigned int hooknum, struct sk_buff **pskb, const struct net_device *in, const struct net_device *out, int (*okfn)(struct sk_buff *)) { struct ip_conntrack *ct; enum ip_conntrack_info ctinfo; unsigned int ret; //處理原始數據包 if ((*pskb)->len < sizeof(struct iphdr) || (*pskb)->nh.iph->ihl * 4 < sizeof(struct iphdr)) return NF_ACCEPT; ret = ip_nat_fn(hooknum, pskb, in, out, okfn); //調用這最重要的函數 if (ret != NF_DROP && ret != NF_STOLEN && (ct = ip_conntrack_get(*pskb, &ctinfo)) != NULL) { enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo); if (ct->tuplehash[dir].tuple.dst.ip != ct->tuplehash[!dir].tuple.src.ip) //目的地址進行了NAT if (__ip_route_me_harder(pskb, RTN_UNSPEC)) //從新綁定輸出包路由 ret = NF_DROP; } } 如今咱們知道其最主要的核心函數就是ip_nat_fn,主要要把這個函數看懂. ============================================================= [協議實現部分] struct ip_nat_protocol ip_nat_protocol_tcp = { .name = "TCP", //協議名稱,字符串常量 .protonum = IPPROTO_TCP, //協議號 .me = THIS_MODULE, .manip_pkt = tcp_manip_pkt, //修改協議相關數據,根據NAT規則來肯定是修改源部分仍是目的部分 .in_range = tcp_in_range, //判斷數據包是不是要進行NAT修改 .unique_tuple = tcp_unique_tuple, //構造一個新tuple,處理將原tuple在進行NAT後對應的鏈接參數, //如TCP源NAT時,除了源地址必需要修改外,通常還要修改源端口, //這個鏈接的後續包的源端口就都改這個端口值,而修改後的這個端口值必須是惟一的,和 //這個鏈接綁定,其餘鏈接就不能再使用這個端口,若是找不到合適的tuple值,NAT將失敗, //也就是說,對於多對一的NAT轉換,理論上最多隻能處理65535個TCP鏈接, //超過此數的新的TCP鏈接就沒法進行NAT了,對於 TCP和UDP, //就是檢測查找一個新的未用端口生成一個新的tuple結構對應該鏈接, //對應ICMP,則是找一個未用的 ID值 #if defined(CONFIG_IP_NF_CONNTRACK_NETLINK) || defined(CONFIG_IP_NF_CONNTRACK_NETLINK_MODULE) .range_to_nfattr = ip_nat_port_range_to_nfattr, .nfattr_to_range = ip_nat_port_nfattr_to_range, #endif }; static int tcp_manip_pkt(struct sk_buff **pskb, unsigned int iphdroff, const struct ip_conntrack_tuple *tuple, enum ip_nat_manip_type maniptype) { struct iphdr *iph = (struct iphdr *)((*pskb)->data + iphdroff); struct tcphdr *hdr; unsigned int hdroff = iphdroff + iph->ihl*4; //tcp頭位置 u32 oldip, newip; u16 *portptr, newport, oldport; int hdrsize = 8; //skb包含了完整的tcp頭 if ((*pskb)->len >= hdroff + sizeof(struct tcphdr)) hdrsize = sizeof(struct tcphdr); if (!skb_make_writable(pskb, hdroff + hdrsize)) //已經看到過 return 0; iph = (struct iphdr *)((*pskb)->data + iphdroff); hdr = (struct tcphdr *)((*pskb)->data + hdroff); if (maniptype == IP_NAT_MANIP_SRC) { oldip = iph->saddr; newip = tuple->src.ip; newport = tuple->src.u.tcp.port; portptr = &hdr->source; } else { oldip = iph->daddr; newip = tuple->dst.ip; newport = tuple->dst.u.tcp.port; portptr = &hdr->dest; } //修改端口 oldport = *portptr; *portptr = newport; if (hdrsize < sizeof(*hdr)) return 1; //更新校驗和 hdr->check = ip_nat_cheat_check(~oldip, newip, ip_nat_cheat_check(oldport ^ 0xFFFF, newport, hdr->check)); } static int tcp_in_range(const struct ip_conntrack_tuple *tuple, enum ip_nat_manip_type maniptype, const union ip_conntrack_manip_proto *min, const union ip_conntrack_manip_proto *max) { u_int16_t port; if (maniptype == IP_NAT_MANIP_SRC) port = tuple->src.u.tcp.port; else port = tuple->dst.u.tcp.port; //在最大和最小之間 return ntohs(port) >= ntohs(min->tcp.port) && ntohs(port) <= ntohs(max->tcp.port); } static int tcp_unique_tuple(struct ip_conntrack_tuple *tuple, const struct ip_nat_range *range, enum ip_nat_manip_type maniptype, const struct ip_conntrack *conntrack) { static u_int16_t port; u_int16_t *portptr; unsigned int range_size, min, i; //指向相應的端口 if (maniptype == IP_NAT_MANIP_SRC) portptr = &tuple->src.u.tcp.port; else portptr = &tuple->dst.u.tcp.port; //沒有指定範圍 if (!(range->flags & IP_NAT_RANGE_PROTO_SPECIFIED)) { if (maniptype == IP_NAT_MANIP_DST) //是目的NAT,不改變端口 return 0; if (ntohs(*portptr) < 1024) { //端口小於1024 if (ntohs(*portptr) < 512) { //小於512 min = 1; range_size = 511 - min + 1; } else { //大於512 min = 600; range_size = 1023 - min + 1; } } else { //大於1024 min = 1024; range_size = 65535 - 1024 + 1; } } else { //指定了範圍 min = ntohs(range->min.tcp.port); range_size = ntohs(range->max.tcp.port) - min + 1; } for (i = 0; i < range_size; i++, port++) { //循環直到找到一個未使用的tuple *portptr = htons(min + port % range_size); //取一個隨機端口,在範圍內的 if (!ip_nat_used_tuple(tuple, conntrack)) { 在ip_conntrack_hash全局表中查找相同的tuple return 1; } } return 0; } [/協議實現部分]