利用OpenCV和深度學習實現人臉檢測

今天偷點兒懶,就沒有及時整理最新的paper,還請各位看官諒解。這裏整理了一份前段時間作的小demo,實現獻醜了python

本文基於OpenCV3.3.1或以上版本(如OpenCV3.4)、DNN模塊和face_detector示例實現簡單、實時的人臉檢測。ios

往期回顧git

[計算機視覺] 入門學習資料github

[計算機視覺論文速遞] 2018-03-20算法

[計算機視覺論文速遞] 2018-03-18網絡

注:框架

[1]:主要參考Face detection with OpenCV and deep learning這個英文教程,並做部分修改。ide

[2]:親測OpenCV3.3.0及如下版本,並無face_detector示例,且不支持face_detector。爲了不折騰,仍是建議使用OpenCV3.3.1及以上(如OpenCV3.4)。oop

1 face_detector簡介學習

face_detector示例連接:

https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector

利用OpenCV和深度學習實現人臉檢測

當電腦配置好OpenCV3.3.1或以上版本時,在opencv\samples\dnn也能夠找到face_detector示例文件夾,以下圖所示:

利用OpenCV和深度學習實現人臉檢測

使用OpenCV的DNN模塊以及Caffe模型,必需要有.prototxt和.caffemodel兩種文件。但face_detector文件夾中,只有.prototxt一類文件,即缺乏訓練好的.caffemodel。.prototxt和.caffemodel的做用以下:

The .prototxt file(s) which define the model architecture (i.e., the layers themselves)

The .caffemodel file which contains the weights for the actual layers

face_detector文件分析:

deploy.prototxt:調用.caffemodel時的測試網絡文件

how_to_train_face_detector.txt:如何使用自定義數據集來訓練網絡的說明

solver.prototxt:超參數文件

test.prototxt:測試網絡文件

train.prototxt:訓練網絡文件

本教程直接使用訓練好的.caffemodel來進行人臉檢測,即只須要.caffemodel和deploy.prototxt兩個文件。若是想要使用本身的數據集來訓練網絡,請參考"how_to_train_face_detector.txt"。

2 ResNet-10和SSD簡介

本教程屬於實戰篇,故不深刻介紹算法內容,若對ResNet和SSD感興趣的同窗,能夠參考下述連接進行學習

[1]ResNet paper:https://arxiv.org/abs/1512.03385

[2]ResNet in Caffe:https://github.com/soeaver/caffe-model/tree/master/cls/resnet

[3]SSD paper:https://arxiv.org/abs/1512.02325

[4]SSD in Caffe:https://github.com/weiliu89/caffe/tree/ssd

3 .caffemodel下載

res10_300x300_ssd_iter_140000.caffemodel下載連接:https://anonfile.com/W7rdG4d0b1/face_detector.rar

4 C++版本代碼

4.1 圖像中的人臉檢測

對於OpenCV3.4版本,可直接使用opencv-3.4.1\samples\dnn文件夾中的resnet_ssd_face.cpp;

對於OpenCV3.3.1版本,可參考下述代碼:

face_detector_image.cpp

1// Summary: 使用OpenCV3.3.1中的face_detector對圖像進行人臉識別
  2
  3// Author: Amusi
  4
  5// Date:   2018-02-28
  6
  7#include <iostream>
  8#include <opencv2/opencv.hpp>
  9#include <opencv2/dnn.hpp>
 10
 11using namespace std;
 12using namespace cv;
 13using namespace cv::dnn;
 14
 15
 16// Set the size of image and meanval
 17const size_t inWidth = 300;
 18const size_t inHeight = 300;
 19const double inScaleFactor = 1.0;
 20const Scalar meanVal(104.0, 177.0, 123.0);
 21
 22
 23
 24int main(int argc, char** argv)
 25{
 26    // Load image
 27    Mat img;
 28    // Use commandline
 29#if 0
 30
 31    if (argc < 2)
 32    {
 33        cerr<< "please input "<< endl;
 34        cerr << "[Format]face_detector_img.exe image.jpg"<< endl;
 35        return -1;
 36    }
 37
 38    img = imread(argv[1]);
 39
 40#else
 41    // Not use commandline
 42    img = imread("iron_chic.jpg");
 43#endif
 44
 45
 46
 47    // Initialize Caffe network
 48    float min_confidence = 0.5;
 49
 50    String modelConfiguration = "face_detector/deploy.prototxt";
 51
 52    String modelBinary = "face_detector/res10_300x300_ssd_iter_140000.caffemodel";
 53
 54    dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary);
 55
 56
 57
 58    if (net.empty())
 59    {
 60        cerr << "Can't load network by using the following files: " << endl;
 61        cerr << "prototxt:   " << modelConfiguration << endl;
 62        cerr << "caffemodel: " << modelBinary << endl;
 63        cerr << "Models are available here:" << endl;
 64        cerr << "<OPENCV_SRC_DIR>/samples/dnn/face_detector" << endl;
 65        cerr << "or here:" << endl;
 66        cerr << "https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector" << endl;
 67        exit(-1);
 68    }
 69
 70
 71
 72    // Prepare blob
 73    Mat inputBlob = blobFromImage(img, inScaleFactor, Size(inWidth, inHeight), meanVal, false, false);
 74    net.setInput(inputBlob, "data");    // set the network input
 75    Mat detection = net.forward("detection_out");    // compute output
 76
 77    // Calculate and display time and frame rate
 78
 79    vector<double> layersTimings;
 80    double freq = getTickFrequency() / 1000;
 81    double time = net.getPerfProfile(layersTimings) / freq;
 82
 83    Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
 84    ostringstream ss;
 85    ss << "FPS: " << 1000 / time << " ; time: " << time << "ms" << endl;
 86
 87    putText(img, ss.str(), Point(20,20), 0, 0.5, Scalar(0, 0, 255));
 88
 89    float confidenceThreshold = min_confidence;
 90    for (int i = 0; i < detectionMat.rows; ++i)
 91    {
 92        // judge confidence
 93        float confidence = detectionMat.at<float>(i, 2);
 94
 95        if (confidence > confidenceThreshold)
 96        {
 97            int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * img.cols);
 98            int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * img.rows);
 99            int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * img.cols);
100            int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * img.rows);
101            Rect object((int)xLeftBottom, (int)yLeftBottom, (int (xRightTop - xLeftBottom),
102            (int)(yRightTop - yLeftBottom));
103            rectangle(img, object, Scalar(0, 255, 0));
104            ss.str("");
105            ss << confidence;
106            String conf(ss.str());
107            String label = "Face: " + conf;
108            int baseLine = 0;
109            Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
110            rectangle(img, Rect(Point(xLeftBottom, yLeftBottom-labelSize.height),
111            Size(labelSize.width, labelSize.height + baseLine)),
112            Scalar(255, 255, 255), CV_FILLED);
113            putText(img, label, Point(xLeftBottom, yLeftBottom),
114            FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));
115
116        }
117    }
118
119    namedWindow("Face Detection", WINDOW_NORMAL);
120    imshow("Face Detection", img);
121    waitKey(0);
122
123return 0;
124
125}

檢測結果

利用OpenCV和深度學習實現人臉檢測

4.2 攝像頭/視頻中的人臉檢測

face_detector_video.cpp

1// Summary: 使用OpenCV3.3.1中的face_detector
  2// Author: Amusi
  3// Date:   2018-02-28
  4// Reference: http://blog.csdn.net/minstyrain/article/details/78907425
  5
  6#include <iostream>  
  7#include <cstdlib>  
  8#include <stdio.h>
  9#include <opencv2/opencv.hpp>
 10#include <opencv2/dnn.hpp>
 11#include <opencv2/dnn/shape_utils.hpp>
 12
 13using namespace cv;  
 14using namespace cv::dnn;  
 15using namespace std;  
 16const size_t inWidth = 300;  
 17const size_t inHeight = 300;  
 18const double inScaleFactor = 1.0;  
 19const Scalar meanVal(104.0, 177.0, 123.0);  
 20
 21int main(int argc, char** argv)  
 22{  
 23    float min_confidence = 0.5;  
 24    String modelConfiguration = "face_detector/deploy.prototxt";  
 25    String modelBinary = "face_detector/res10_300x300_ssd_iter_140000.caffemodel";  
 26    //! [Initialize network]  
 27    dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary);  
 28    //! [Initialize network]  
 29    if (net.empty())  
 30    {  
 31        cerr << "Can't load network by using the following files: " << endl;  
 32        cerr << "prototxt:   " << modelConfiguration << endl;  
 33        cerr << "caffemodel: " << modelBinary << endl;  
 34        cerr << "Models are available here:" << endl;  
 35        cerr << "<OPENCV_SRC_DIR>/samples/dnn/face_detector" << endl;  
 36        cerr << "or here:" << endl;  
 37        cerr << "https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector" << endl;  
 38        exit(-1);  
 39    }  
 40
 41    VideoCapture cap(0);  
 42    if (!cap.isOpened())  
 43    {  
 44        cout << "Couldn't open camera : " << endl;  
 45        return -1;  
 46    }  
 47    for (;;)  
 48    {  
 49        Mat frame;  
 50        cap >> frame; // get a new frame from camera/video or read image  
 51
 52        if (frame.empty())  
 53        {  
 54            waitKey();  
 55            break;  
 56        }  
 57
 58        if (frame.channels() == 4)  
 59            cvtColor(frame, frame, COLOR_BGRA2BGR);  
 60
 61        //! [Prepare blob]  
 62        Mat inputBlob = blobFromImage(frame, inScaleFactor,  
 63            Size(inWidth, inHeight), meanVal, false, false); //Convert Mat to batch of images  
 64                                                             //! [Prepare blob]  
 65
 66                                                             //! [Set input blob]  
 67        net.setInput(inputBlob, "data"); //set the network input  
 68                                         //! [Set input blob]  
 69
 70                                         //! [Make forward pass]  
 71        Mat detection = net.forward("detection_out"); //compute output  
 72                                                      //! [Make forward pass]  
 73
 74        vector<double> layersTimings;  
 75        double freq = getTickFrequency() / 1000;  
 76        double time = net.getPerfProfile(layersTimings) / freq;  
 77
 78        Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());  
 79
 80        ostringstream ss;  
 81        ss << "FPS: " << 1000 / time << " ; time: " << time << " ms";  
 82        putText(frame, ss.str(), Point(20, 20), 0, 0.5, Scalar(0, 0, 255));  
 83
 84        float confidenceThreshold = min_confidence;  
 85        for (int i = 0; i < detectionMat.rows; i++)  
 86        {  
 87            float confidence = detectionMat.at<float>(i, 2);  
 88
 89            if (confidence > confidenceThreshold)  
 90            {  
 91                int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols);  
 92                int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows);  
 93                int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols);  
 94                int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows);  
 95
 96                Rect object((int)xLeftBottom, (int)yLeftBottom,  
 97                    (int)(xRightTop - xLeftBottom),  
 98                    (int)(yRightTop - yLeftBottom));  
 99
100                rectangle(frame, object, Scalar(0, 255, 0));  
101
102                ss.str("");  
103                ss << confidence;  
104                String conf(ss.str());  
105                String label = "Face: " + conf;  
106                int baseLine = 0;  
107                Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);  
108                rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height),  
109                    Size(labelSize.width, labelSize.height + baseLine)),  
110                    Scalar(255, 255, 255), CV_FILLED);  
111                putText(frame, label, Point(xLeftBottom, yLeftBottom),  
112                    FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 0));  
113            }  
114        }  
115        cv::imshow("detections", frame);  
116        if (waitKey(1) >= 0) break;  
117    }  
118    return 0;  
119}

檢測結果

利用OpenCV和深度學習實現人臉檢測

5 Python版本代碼

最簡單安裝Python版的OpenCV方法

pip install opencv-contrib-python

對於OpenCV3.4版本,可直接使用opencv-3.4.1\samples\dnn文件夾中的resnet_ssd_face_python.py;

對於OpenCV3.3.1版本,可參考下述代碼(本身寫的):

5.1 圖像中的人臉檢測

detect_faces.py

1# USAGE
 2# python detect_faces.py --image rooster.jpg --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel
 3
 4# import the necessary packages
 5import numpy as np
 6import argparse
 7import cv2
 8
 9# construct the argument parse and parse the arguments
10ap = argparse.ArgumentParser()
11ap.add_argument("-i", "--image", required=True,
12    help="path to input image")
13ap.add_argument("-p", "--prototxt", required=True,
14    help="path to Caffe 'deploy' prototxt file")
15ap.add_argument("-m", "--model", required=True,
16    help="path to Caffe pre-trained model")
17ap.add_argument("-c", "--confidence", type=float, default=0.5,
18    help="minimum probability to filter weak detections")
19args = vars(ap.parse_args())
20
21# load our serialized model from disk
22print("[INFO] loading model...")
23net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
24
25# load the input image and construct an input blob for the image
26# by resizing to a fixed 300x300 pixels and then normalizing it
27image = cv2.imread(args["image"])
28(h, w) = image.shape[:2]
29blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0,
30    (300, 300), (104.0, 177.0, 123.0))
31
32# pass the blob through the network and obtain the detections and
33# predictions
34print("[INFO] computing object detections...")
35net.setInput(blob)
36detections = net.forward()
37
38# loop over the detections
39for i in range(0, detections.shape[2]):
40    # extract the confidence (i.e., probability) associated with the
41    # prediction
42    confidence = detections[0, 0, i, 2]
43
44    # filter out weak detections by ensuring the `confidence` is
45    # greater than the minimum confidence
46    if confidence > args["confidence"]:
47        # compute the (x, y)-coordinates of the bounding box for the
48        # object
49        box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
50        (startX, startY, endX, endY) = box.astype("int")
51
52        # draw the bounding box of the face along with the associated
53        # probability
54        text = "{:.2f}%".format(confidence * 100)
55        y = startY - 10 if startY - 10 > 10 else startY + 10
56        cv2.rectangle(image, (startX, startY), (endX, endY),
57            (0, 0, 255), 2)
58        cv2.putText(image, text, (startX, y),
59            cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
60
61# show the output image
62cv2.imshow("Output", image)
63cv2.waitKey(0)

打開cmd命令提示符,切換至路徑下,輸入下述命令:

python detect_faces.py --image rooster.jpg --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel

檢測結果

利用OpenCV和深度學習實現人臉檢測

python detect_faces.py --image iron_chic.jpg --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel

檢測結果

利用OpenCV和深度學習實現人臉檢測

5.2 攝像頭/視頻中的人臉檢測

detect_faces_video.py

1# USAGE
 2# python detect_faces_video.py --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel
 3
 4# import the necessary packages
 5from imutils.video import VideoStream
 6import numpy as np
 7import argparse
 8import imutils
 9import time
10import cv2
11
12# construct the argument parse and parse the arguments
13ap = argparse.ArgumentParser()
14ap.add_argument("-p", "--prototxt", required=True,
15    help="path to Caffe 'deploy' prototxt file")
16ap.add_argument("-m", "--model", required=True,
17    help="path to Caffe pre-trained model")
18ap.add_argument("-c", "--confidence", type=float, default=0.5,
19    help="minimum probability to filter weak detections")
20args = vars(ap.parse_args())
21
22# load our serialized model from disk
23print("[INFO] loading model...")
24net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
25
26# initialize the video stream and allow the cammera sensor to warmup
27print("[INFO] starting video stream...")
28vs = VideoStream(src=0).start()
29time.sleep(2.0)
30
31# loop over the frames from the video stream
32while True:
33    # grab the frame from the threaded video stream and resize it
34    # to have a maximum width of 400 pixels
35    frame = vs.read()
36    frame = imutils.resize(frame, width=400)
37
38    # grab the frame dimensions and convert it to a blob
39    (h, w) = frame.shape[:2]
40    blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0,
41        (300, 300), (104.0, 177.0, 123.0))
42
43    # pass the blob through the network and obtain the detections and
44    # predictions
45    net.setInput(blob)
46    detections = net.forward()
47
48    # loop over the detections
49    for i in range(0, detections.shape[2]):
50        # extract the confidence (i.e., probability) associated with the
51        # prediction
52        confidence = detections[0, 0, i, 2]
53
54        # filter out weak detections by ensuring the `confidence` is
55        # greater than the minimum confidence
56        if confidence < args["confidence"]:
57            continue
58
59        # compute the (x, y)-coordinates of the bounding box for the
60        # object
61        box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
62        (startX, startY, endX, endY) = box.astype("int")
63
64        # draw the bounding box of the face along with the associated
65        # probability
66        text = "{:.2f}%".format(confidence * 100)
67        y = startY - 10 if startY - 10 > 10 else startY + 10
68        cv2.rectangle(frame, (startX, startY), (endX, endY),
69            (0, 0, 255), 2)
70        cv2.putText(frame, text, (startX, y),
71            cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
72
73    # show the output frame
74    cv2.imshow("Frame", frame)
75    key = cv2.waitKey(1) & 0xFF
76
77    # if the `q` key was pressed, break from the loop
78    if key == ord("q"):
79        break
80
81# do a bit of cleanup
82cv2.destroyAllWindows()
83vs.stop()

打開cmd命令提示符,切換至路徑下,輸入下述命令:

python detect_faces_video.py --prototxt deploy.prototxt.txt --model res10_300x300_ssd_iter_140000.caffemodel

若是程序出錯,如ImportError: No module named imutils.video。這說明當前Python庫中沒有imutils庫,因此可使用pip安裝:

pip install imutils

檢測結果

利用OpenCV和深度學習實現人臉檢測

總結

本教程介紹並使用了OpenCV最新提供的更加精確的人臉檢測器(與OpenCV的Haar級聯相比)。

這裏的OpenCV人臉檢測器是基於深度學習的,特別是利用ResNet和SSD框架做爲基礎網絡。

感謝Aleksandr Rybnikov、OpenCV dnn模塊和Adrian Rosebrock等其餘貢獻者的努力,咱們能夠在本身的應用中享受到這些更加精確的OpenCV人臉檢測器。

爲了你的方便,我已經爲你準備了本教程所使用的必要文件,請見下述內容。

代碼下載

deep-learning-face-detection.rar:https://anonfile.com/nft4G4d5b1/deep-learning-face-detection.rar

Reference

[1]Face detection with OpenCV and deep learning:https://www.pyimagesearch.com/2018/02/26/face-detection-with-opencv-and-deep-learning/

[2]face_detector:https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector

[3]opencv3.4 發佈 dnnFace震撼來襲:http://blog.csdn.net/minstyrain/article/details/78907425

相關文章
相關標籤/搜索