基礎篇:JAVA.Stream函數,優雅的數據流操做

前言

平時操做集合數據,咱們通常都是for或者iterator去遍歷,不是很好看。java提供了Stream的概念,它可讓咱們把集合數據當作一個個元素在處理,而且提供多線程模式java

  • 流的建立
  • 流的各類數據操做
  • 流的終止操做
  • 流的聚合處理
  • 併發流和CompletableFuture的配合使用

關注公衆號,一塊兒交流,微信搜一搜: 潛行前行

1 stream的構造方式

stream內置的構造方法

public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f)
public static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b)
public static<T> Builder<T> builder()
public static<T> Stream<T> of(T t)
public static<T> Stream<T> empty()
public static<T> Stream<T> generate(Supplier<T> s)

Collection聲明的stream函數

default Stream<E> stream()
  • Collection聲明瞭stream轉化函數,也就是說,任意Collection子類都存在官方替咱們實現的由Collection轉爲Stream的方法
  • 示例,List轉Stream
public static void main(String[] args){
    List<String> demo =  Arrays.asList("a","b","c");
    long count = demo.stream().peek(System.out::println).count();
    System.out.println(count);
}
-------result--------
a
b
c
3

2 接口stream對元素的操做方法定義

過濾 filter

Stream<T> filter(Predicate<? super T> predicate)
  • Predicate是函數式接口,能夠直接用lambda代替;若是有複雜的過濾邏輯,則用or、and、negate方法組合
  • 示例
List<String> demo = Arrays.asList("a", "b", "c");
Predicate<String> f1 = item -> item.equals("a");
Predicate<String> f2 = item -> item.equals("b");
demo.stream().filter(f1.or(f2)).forEach(System.out::println);
-------result--------
a
b

映射轉化 map

<R> Stream<R> map(Function<? super T, ? extends R> mapper)
IntStream mapToInt(ToIntFunction<? super T> mapper);
LongStream mapToLong(ToLongFunction<? super T> mapper);
DoubleStream mapToDouble(ToDoubleFunction<? super T> mapper);
  • 示例
static class User{
    public User(Integer id){this.id = id; }
    Integer id; public Integer getId() {  return id; }
}
public static void main(String[] args) {
    List<User> demo = Arrays.asList(new User(1), new User(2), new User(3));
    // User 轉爲 Integer(id)
    demo.stream().map(User::getId).forEach(System.out::println);
}
-------result--------
1
2
3

數據處理 peek

Stream<T> peek(Consumer<? super T> action);
  • 與map的區別是其無返回值
  • 示例
static class User{
    public User(Integer id){this.id = id; }
    Integer id;
    public Integer getId() {  return id; }
    public void setId(Integer id) {  this.id = id; }
}
public static void main(String[] args) {
    List<User> demo = Arrays.asList(new User(1), new User(2), new User(3));
    // id平方,User 轉爲 Integer(id)
    demo.stream().peek(user -> user.setId(user.id * user.id)).map(User::getId).forEach(System.out::println);
}
-------result--------
1
4
9

映射攆平 flatMap

<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);
IntStream flatMapToInt(Function<? super T, ? extends IntStream> mapper);
LongStream flatMapToLong(Function<? super T, ? extends LongStream> mapper);
DoubleStream flatMapToDouble(Function<? super T, ? extends DoubleStream> mapper);
  • flatMap:將元素爲Stream<T>類型的流攆平成一個元素類型爲T的Stream流
  • 示例
public static void main(String[] args) {
    List<Stream<Integer>> demo = Arrays.asList(Stream.of(5), Stream.of(2), Stream.of(1));
    demo.stream().flatMap(Function.identity()).forEach(System.out::println);
}
-------result--------
5
2
1

去重 distinct

Stream<T> distinct();
  • 示例
List<Integer> demo = Arrays.asList(1, 1, 2);
demo.stream().distinct().forEach(System.out::println);
-------result--------
1
2

排序 sorted

Stream<T> sorted();
Stream<T> sorted(Comparator<? super T> comparator);
  • 示例
List<Integer> demo = Arrays.asList(5, 1, 2);
//默認升序
demo.stream().sorted().forEach(System.out::println);
//降序
Comparator<Integer> comparator = Comparator.<Integer, Integer>comparing(item -> item).reversed();
demo.stream().sorted(comparator).forEach(System.out::println);
-------默認升序 result--------
1
2
5
-------降序 result--------
5
2
1

個數限制limit和跳過skip

//截取前maxSize個元素
Stream<T> limit(long maxSize);
//跳過前n個流
Stream<T> skip(long n);
  • 示例
List<Integer> demo = Arrays.asList(1, 2, 3, 4, 5, 6);
//跳過前兩個,而後限制截取兩個
demo.stream().skip(2).limit(2).forEach(System.out::println);
-------result--------
3
4

JDK9提供的新操做

  • 和filter的區別,takeWhile是取知足條件的元素,直到不知足爲止;dropWhile是丟棄知足條件的元素,直到不知足爲止
default Stream<T> takeWhile(Predicate<? super T> predicate);
default Stream<T> dropWhile(Predicate<? super T> predicate);

3 stream的終止操做action

遍歷消費

//遍歷消費
void forEach(Consumer<? super T> action);
//順序遍歷消費,和forEach的區別是forEachOrdered在多線程parallelStream執行,其順序也不會亂
void forEachOrdered(Consumer<? super T> action);
  • 示例
List<Integer> demo = Arrays.asList(1, 2, 3);
demo.parallelStream().forEach(System.out::println);
demo.parallelStream().forEachOrdered(System.out::println);
-------forEach result--------
2
3
1
-------forEachOrdered result--------
1
2
3

獲取數組結果

//流轉成Object數組
Object[] toArray();
//流轉成A[]數組,指定類型A
<A> A[] toArray(IntFunction<A[]> generator)
  • 示例
List<String> demo = Arrays.asList("1", "2", "3");
//<A> A[] toArray(IntFunction<A[]> generator)
String[] data = demo.stream().toArray(String[]::new);

最大最小值

//獲取最小值
Optional<T> min(Comparator<? super T> comparator)
//獲取最大值
Optional<T> max(Comparator<? super T> comparator)
  • 示例
List<Integer> demo = Arrays.asList(1, 2, 3);
Optional<Integer> min = demo.stream().min(Comparator.comparing(item->item));
Optional<Integer> max = demo.stream().max(Comparator.comparing(item->item));
System.out.println(min.get()+"-"+max.get());
-------result--------
1-3

查找匹配

//任意一個匹配
boolean anyMatch(Predicate<? super T> predicate)
//所有匹配
boolean allMatch(Predicate<? super T> predicate)
//不匹配 
boolean noneMatch(Predicate<? super T> predicate)
//查找第一個
Optional<T> findFirst();
//任意一個
Optional<T> findAny();

歸約合併

//兩兩合併
Optional<T> reduce(BinaryOperator<T> accumulator)
//兩兩合併,帶初始值的
T reduce(T identity, BinaryOperator<T> accumulator)
//先轉化元素類型再兩兩合併,帶初始值的
<U> U reduce(U identity, BiFunction<U, ? super T, U> accumulator, BinaryOperator<U> combiner)
  • 示例
List<Integer> demo = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8);
//數字轉化爲字符串,而後使用「-」拼接起來
String data = demo.stream().reduce("0", (u, t) -> u + "-" + t, (s1, s2) -> s1 + "-" + s2);
System.out.println(data);
-------result--------
0-1-2-3-4-5-6-7-8

計算元素個數

long count()
  • 示例
List<Integer> demo = Arrays.asList(1, 2, 3, 4, 5, 6);
System.out.println(demo.stream().count());
-------result--------
6

對流的聚合處理

/**
 * supplier:返回結果類型的生產者
 * accumulator:元素消費者(處理並加入R)
 * combiner: 返回結果 R 怎麼組合(多線程執行時,會產生多個返回值R,須要合併)
 */
<R> R collect(Supplier<R> supplier, BiConsumer<R, ? super T> accumulator, BiConsumer<R, R> combiner);
/**
 * collector通常是由 supplier、accumulator、combiner、finisher、characteristics組合成的聚合類
 * Collectors 可提供一些內置的聚合類或者方法
 */
<R, A> R collect(Collector<? super T, A, R> collector);
  • 示例,看下面

4 Collector(聚合類)的工具類集Collectors

接口Collector和實現類CollectorImpl

//返回值類型的生產者
Supplier<A> supplier();
//流元素消費者
BiConsumer<A, T> accumulator();
//返回值合併器(多個線程操做時,會產生多個返回值,須要合併)
BinaryOperator<A> combiner();
//返回值轉化器(最後一步處理,實際返回結果,通常原樣返回)
Function<A, R> finisher();
//流的特性
Set<Characteristics> characteristics();

public static<T, A, R> Collector<T, A, R> of(Supplier<A> supplier,
	BiConsumer<A, T> accumulator, BinaryOperator<A> combiner,
	Function<A, R> finisher, Characteristics... characteristics)

流聚合轉換成List, Set

//流轉化成List
public static <T> Collector<T, ?, List<T>> toList()
//流轉化成Set
public static <T> Collector<T, ?, Set<T>> toSet()
  • 示例
List<Integer> demo = Arrays.asList(1, 2, 3);
List<Integer> col = demo.stream().collect(Collectors.toList());
Set<Integer> set = demo.stream().collect(Collectors.toSet());

流聚合轉化成Map

//流轉化成Map
public static <T, K, U> Collector<T, ?, Map<K,U>> toMap(
	Function<? super T, ? extends K> keyMapper,
    Function<? super T, ? extends U> valueMapper)
/**
 * mergeFunction:相同的key,值怎麼合併
 */
public static <T, K, U> Collector<T, ?, Map<K,U>> toMap(
	Function<? super T, ? extends K> keyMapper,
	Function<? super T, ? extends U> valueMapper,
    BinaryOperator<U> mergeFunction)
/**
 * mergeFunction:相同的key,值怎麼合併
 * mapSupplier:返回值Map的生產者
 */
public static <T, K, U, M extends Map<K, U>> Collector<T, ?, M> toMap(
	Function<? super T, ? extends K> keyMapper,
	Function<? super T, ? extends U> valueMapper,
	BinaryOperator<U> mergeFunction,
    Supplier<M> mapSupplier)
  • 若是存在相同key的元素,會報錯;或者使用groupBy
  • 示例
List<User> demo = Arrays.asList(new User(1), new User(2), new User(3));
Map<Integer,User> map = demo.stream().collect(Collectors.toMap(User::getId,item->item));
System.out.println(map);
-------result-------
{1=TestS$User@7b23ec81, 2=TestS$User@6acbcfc0, 3=TestS$User@5f184fc6}

字符串流聚合拼接

//多個字符串拼接成一個字符串
public static Collector<CharSequence, ?, String> joining();
//多個字符串拼接成一個字符串(指定分隔符)
public static Collector<CharSequence, ?, String> joining(CharSequence delimiter)
  • 示例
List<String> demo = Arrays.asList("c", "s", "c","w","潛行前行");
String name = demo.stream().collect(Collectors.joining("-"));
System.out.println(name);
-------result-------
c-s-c-w-潛行前行

映射處理再聚合流

  • 至關於先map再collect
/**
 * mapper:映射處理器
 * downstream:映射處理後須要再次聚合處理
 */
public static <T, U, A, R> Collector<T, ?, R> mapping(Function<? super T, ? extends U> mapper, 
		Collector<? super U, A, R> downstream);
  • 示例
List<String> demo = Arrays.asList("1", "2", "3");
List<Integer> data = demo.stream().collect(Collectors.mapping(Integer::valueOf, Collectors.toList()));
System.out.println(data);
-------result-------
[1, 2, 3]

聚合後再轉換結果

/**
 * downstream:聚合處理
 * finisher:結果轉換處理
 */
public static<T,A,R,RR> Collector<T,A,RR> collectingAndThen(Collector<T,A,R> downstream,
		Function<R, RR> finisher);
  • 示例
List<Integer> demo = Arrays.asList(1, 2, 3, 4, 5, 6);
//聚合成List,最後提取數組的size做爲返回值
Integer size = demo.stream().collect(Collectors.collectingAndThen(Collectors.toList(), List::size));
System.out.println(size);
---------result----------
6

流分組(Map是HashMap)

/**
 * classifier 指定T類型某一屬性做爲Key值分組
 * 分組後,使用List做爲每一個流的容器
 */
public static <T, K> Collector<T, ?, Map<K, List<T>>> groupingBy(
		Function<? super T, ? extends K> classifier);           
/**
 * classifier: 流分組器
 * downstream: 每組流的聚合處理器
 */
public static <T, K, A, D> Collector<T, ?, Map<K, D>> groupingBy(
		Function<? super T, ? extends K> classifier, 
		Collector<? super T, A, D> downstream)
/**
 * classifier: 流分組器
 * mapFactory: 返回值map的工廠(Map的子類)
 * downstream: 每組流的聚合處理器
 */
public static <T, K, D, A, M extends Map<K, D>> Collector<T, ?, M> groupingBy(
		Function<? super T, ? extends K> classifier,
		Supplier<M> mapFactory,
		Collector<? super T, A, D> downstream)
  • 示例
public static void main(String[] args) throws Exception {
    List<Integer> demo = Stream.iterate(0, item -> item + 1)
            .limit(15)
            .collect(Collectors.toList());
    // 分紅三組,而且每組元素轉化爲String類型        
    Map<Integer, List<String>> map = demo.stream()
            .collect(Collectors.groupingBy(item -> item % 3,
                    HashMap::new,
                    Collectors.mapping(String::valueOf, Collectors.toList())));
    System.out.println(map);
}
---------result----------    
{0=[0, 3, 6, 9, 12], 1=[1, 4, 7, 10, 13], 2=[2, 5, 8, 11, 14]}

流分組(分組使用的Map是ConcurrentHashMap)

/**
 * classifier: 分組器 ; 分組後,使用List做爲每一個流的容器
 */
public static <T, K> Collector<T, ?, ConcurrentMap<K, List<T>>> groupingByConcurrent(
		Function<? super T, ? extends K> classifier);
/**
 * classifier: 分組器
 * downstream: 流的聚合處理器
 */
public static <T, K, A, D> Collector<T, ?, ConcurrentMap<K, D>> groupingByConcurrent(
		Function<? super T, ? extends K> classifier, Collector<? super T, A, D> downstream)
/**
 * classifier: 分組器
 * mapFactory: 返回值類型map的生產工廠(ConcurrentMap的子類)
 * downstream: 流的聚合處理器
 */
public static <T, K, A, D, M extends ConcurrentMap<K, D>> Collector<T, ?, M> groupingByConcurrent(
		Function<? super T, ? extends K> classifier, 
		Supplier<M> mapFactory,
		Collector<? super T, A, D> downstream);
  • 用法和groupingBy同樣

拆分流,一變二(至關於特殊的groupingBy)

public static <T> Collector<T, ?, Map<Boolean, List<T>>> partitioningBy(
		Predicate<? super T> predicate)
/**
 * predicate: 二分器
 * downstream: 流的聚合處理器
 */
public static <T, D, A> Collector<T, ?, Map<Boolean, D>> partitioningBy(
		Predicate<? super T> predicate, Collector<? super T, A, D> downstream)
  • 示例
List<Integer> demo = Arrays.asList(1, 2,3,4, 5,6);
// 奇數偶數分組
Map<Boolean, List<Integer>> map = demo.stream()
	.collect(Collectors.partitioningBy(item -> item % 2 == 0));
System.out.println(map);
---------result----------
{false=[1, 3, 5], true=[2, 4, 6]}

聚合求平均值

// 返回Double類型
public static <T> Collector<T, ?, Double> averagingDouble(ToDoubleFunction<? super T> mapper)
// 返回Long 類型
public static <T> Collector<T, ?, Double> averagingLong(ToLongFunction<? super T> mapper)
//返回Int 類型
public static <T> Collector<T, ?, Double> averagingInt(ToIntFunction<? super T> mapper)
  • 示例
List<Integer> demo = Arrays.asList(1, 2, 5);
Double data = demo.stream().collect(Collectors.averagingInt(Integer::intValue));
System.out.println(data);
---------result----------
2.6666666666666665

流聚合查找最大最小值

//最小值
public static <T> Collector<T, ?, Optional<T>> minBy(Comparator<? super T> comparator) 
//最大值
public static <T> Collector<T, ?, Optional<T>> maxBy(Comparator<? super T> comparator)
  • 示例
List<Integer> demo = Arrays.asList(1, 2, 5);
Optional<Integer> min = demo.stream().collect(Collectors.minBy(Comparator.comparing(item -> item)));
Optional<Integer> max = demo.stream().collect(Collectors.maxBy(Comparator.comparing(item -> item)));
System.out.println(min.get()+"-"+max.get());
---------result----------
1-5

聚合計算統計結果

  • 能夠得到元素總個數,元素累計總和,最小值,最大值,平均值
//返回Int 類型
public static <T> Collector<T, ?, IntSummaryStatistics> summarizingInt(
		ToIntFunction<? super T> mapper)
//返回Double 類型
public static <T> Collector<T, ?, DoubleSummaryStatistics> summarizingDouble(
		ToDoubleFunction<? super T> mapper)
//返回Long 類型
public static <T> Collector<T, ?, LongSummaryStatistics> summarizingLong(
		ToLongFunction<? super T> mapper)
  • 示例
List<Integer> demo = Arrays.asList(1, 2, 5);
IntSummaryStatistics data = demo.stream().collect(Collectors.summarizingInt(Integer::intValue));
System.out.println(data);
---------result----------
IntSummaryStatistics{count=3, sum=8, min=1, average=2.666667, max=5}

JDK12提供的新聚合方法

//流分別通過downstream一、downstream2聚合處理,再合併兩聚合結果
public static <T, R1, R2, R> Collector<T, ?, R> teeing(
		Collector<? super T, ?, R1> downstream1,
		Collector<? super T, ?, R2> downstream2,
		BiFunction<? super R1, ? super R2, R> merger)

5 併發paralleStream的使用

  • 配合CompletableFuture和線程池的使用
  • 示例
public static void main(String[] args)  throws Exception{
    List<Integer> demo = Stream.iterate(0, item -> item + 1)
            .limit(5)
            .collect(Collectors.toList());
    //示例1
    Stopwatch stopwatch = Stopwatch.createStarted(Ticker.systemTicker());
    demo.stream().forEach(item -> {
        try {
            Thread.sleep(500);
            System.out.println("示例1-"+Thread.currentThread().getName());
        } catch (Exception e) { }
    });
    System.out.println("示例1-"+stopwatch.stop().elapsed(TimeUnit.MILLISECONDS));

    //示例2, 注意須要ForkJoinPool,parallelStream纔會使用executor指定的線程,不然仍是用默認的 ForkJoinPool.commonPool()
    ExecutorService executor = new ForkJoinPool(10);
    stopwatch.reset(); stopwatch.start();
    CompletableFuture.runAsync(() -> demo.parallelStream().forEach(item -> {
        try {
            Thread.sleep(1000);
            System.out.println("示例2-" + Thread.currentThread().getName());
        } catch (Exception e) { }
    }), executor).join();
    System.out.println("示例2-"+stopwatch.stop().elapsed(TimeUnit.MILLISECONDS));
    //示例3
    stopwatch.reset(); stopwatch.start();
    demo.parallelStream().forEach(item -> {
        try {
            Thread.sleep(1000);
            System.out.println("示例3-"+Thread.currentThread().getName());
        } catch (Exception e) { }
    });
    System.out.println("示例3-"+stopwatch.stop().elapsed(TimeUnit.MILLISECONDS));
    executor.shutdown();

}
  • -------------------result--------------------------
示例1-main
示例1-main
示例1-main
示例1-main
示例1-main
示例1-2501
示例2-ForkJoinPool-1-worker-19
示例2-ForkJoinPool-1-worker-9
示例2-ForkJoinPool-1-worker-5
示例2-ForkJoinPool-1-worker-27
示例2-ForkJoinPool-1-worker-23
示例2-1004
示例3-main
示例3-ForkJoinPool.commonPool-worker-5
示例3-ForkJoinPool.commonPool-worker-7
示例3-ForkJoinPool.commonPool-worker-9
示例3-ForkJoinPool.commonPool-worker-3
示例3-1001
  • parallelStream的方法確實會使用多線程去運行,而且能夠指定線程池,不過自定義線程必須是ForkJoinPool類型,不然會默認使ForkJoinPool.commonPool()的線程
相關文章
相關標籤/搜索