第十次做業參考答案
01第一題
第一小題中的求解除了(14)(15)小題以外,其餘的各題均可以在MATLAB中使用MATLAB的符號計算幫助求解,一邊檢查求解的結果正確性。
使用MATLAB求解第一小題能夠參見下面的連接:html
求解:
(1)
L[1−e−at]=s1−s+a1=s(s+a)aweb
(2)
L[sin(t)+2cos(t)]=s2+11+s2+12s=s2+12s+1app
(3)
L[t⋅e−2t]=(s+2)21ide
(4) 由:
L[sin(2t)]=s4+42
再根據s域平移性質,能夠獲得:svg
L[e−t⋅sin(2t)]=(s+1)2+42=s2+2s+52函數
(5) 由於
L[tn]=sn+1n!spa
因此:
L[1+2t]=s1+s22=s2s+2.net
再由s域平移性質,可得:
L[(1+2t)⋅e−t]=(s+1)2s+33d
(6) 由
L[1−cos(αt)]=s1−s2+α2scode
再由s域平移性質,可得:
L{[1−cos(αt)]e−βt}=s+β1−(s+β)2+α2s+β
(7)
L[t2+2t]=s32+s22=s32s+2
(8)
L[2δ(t)−3e−7t]=2−s+73
(9) 由
L[sinh(βt)]=s2−β2β
再由s域的平移性質,可得:
L[e−αtsinh(βt)]=(s+α)2−β2β
(10) 由於
cos2(Ωt)=21+21cos(2Ωt)
因此:
L[cos2(Ωt)]=2s1+21⋅s2+4Ω2s=21(s1+s2+4Ω2s)
(11)
L[β−α1(e−αt−e−βt)]=β−α1(s+α1−s+β1)=(s+α)(s+β)1
(12) 因爲:
L[e−tcos(ωt)]=(s+1)2+ω2s+1
因此:
L[e−(t+a)⋅cos(ωt)]=(s+1)2+ω2(s+1)e−a
(13) 由於:
t⋅e−(t−2)u(t−1)=e⋅[(t−1)⋅e−(t−1)+e−(t−1)]⋅u(t−1)
且:
L[(t−1)e−(t−1)u(t−1)]=(s+1)2e−s
L[e−(t−1)u(t−1)]=s+1e−s
因此:
L[t⋅e−(t−2)u(t−1)]=e⋅[(s+1)21+s+11]⋅e−s=(s+1)2(s+2)e−(s−1)
(14) 由拉普拉斯變換的s域平移特性:
L[e−tf(t)]=F(s+1)
由尺度變換性質,獲得:
L[e−atf(at)]=aF(as+1)
(15) 由拉普拉斯變換的尺度特性:
L[f(at)]=aF(as)
再由s域平移性質,可得:
L[e−atf(at)]=aF[a(s+a)]=aF(as+a2)
(16) 根據:
cos3(3t)=cos(3t)⋅21+cos(6t)=41cos(9t)+43cos(t)
因此:
L[cos3(3t)]=41⋅s2+81s+43⋅s2+9s
再根據s域的微分性質,可得:
L[t⋅cos3(3t)]=−dsd(41s2+81s+43⋅s2+9s)=41[(s2+81)2s2−81+(s2+9)23s2−27]
(17) 根據:
L[cos(2t)]=s2+4s
連續兩次應用s域微分性質,可得:
L[t⋅cos(2t)]=(s2+4)2s2−4
L[t2⋅cos(2t)]=(s2+4)32s2−24s
(18) 根據
L[1−e−αt]=s1−s+α1
再由s域的積分性質,可得:
L[t1(1−e−αt)]=∫s+∞(s11−s1+α1)ds1=ln(s+α)−lns=−ln(s+αs)
(19) 根據
L[e−3t−e−5t]=s+31−s+51
再由s域的積分性質可得:
L[te−3t−e−5t]=∫s+∞(s1+31−s1+51)ds1=ln(s+3s+5)
(20) 根據:
L[sin(αt)]=s2+α2α
再由s域的積分性質可得:
L[tsin(αt)]=∫s+∞s12+α2αds1=∫s+∞(αs1)2+11d(αs1)=2π−arctan(αs)=arctan(sα)
02第二題
求解:
(1)解答:
X(z)=n=0∑∞(41)nz−n=4z−14z=z−41z,∣z∣>41
(2)解答:
X(z)=n=0∑∞(−31)nz−n=z+31z=3z+13z,∣z∣>31
(3)解答:
X(z)=n=−∞∑0(21)nz−n=1−2z1,∣z∣<21
(4)解答:
X(z)=n=−∞∑0(−21)nz−n=1+2z1,∣z∣<21
(5)解答:
X(z)=n=−∞∑−1−(61)n−1z−nu[−n−1]=6z−136z,∣z∣<61
(6)解答:
X(z)=z−11,∣z∣>1
(7)解答:
X(z)=n=0∑3(101)n⋅z−n=1−10z11−(10z1)3=(10z)2(10z−1)(10z)3−1,∣z∣>0
(8)解答:
X(z)=z−51z+z−61z=(5z−1)⋅(6z−1)z(60z−11),∣z∣>51
(9)解答:
X(z)=1−21z−8=2z82z8−1,∣z∣>0
03第三題
求雙邊序列
x[n]=(a1)∣n∣,∣a∣>1
的z變換,並代表收斂於及繪製出零極點圖。
求解:
將雙邊序列分紅右邊和左邊序列,分別求出各自的Z變換。
xR[n]=(a1)n,n≥0,xL[n]=(a1)−n=an,n<0
Z{xR[n]}=z−a1z,∣z∣>a1
Z{xL[n]}=n=−∞∑−1anz−n=n=1∑∞zna−n
=n=0∑∞zna−n−1=1−za−11−1=z−a−z
Z{x[n]}=Z{xR[n]+xL[n]}
=z−a1z+z−a−z=az2−(1+a2)z+a(1−a2)z
04第四題
求解:
(1)解答
L−1(s+21)=e−2t,t≥0
(2)解答:
L−1(2s+54)=L−1(s+252)=2⋅e−25tt≥1
(3)解答:
s(2s+3)2=s32+s+23−32
L−1(s32+s+23−32)=32u(t)−32e−23t.u(t)
(4)解答:
s(s2+3)1=s31+s2+3−31s
L−1(s31−s2+331s)=31u(t)−31cos3
t⋅u(t)
(5)解答:
(s+4)(s+3)3=s+33−s+43
L−1[s+33−s+43]=3e−3t−3e−4t,t≥0
(6)解答:
(s+4)(s+3)3s=s+3−9+s+412
L−1(s+3−9+s+412)=−9e−3t+12e−4t,t≥0
(7)解答:
L−1(s2+11+1)=sint+δ(t),t≥0
(8)解答:
s2−3s+21=s−1−1+s−21
L−1(s−1−1+s−21)=−et+e2t,t≥0
(9)解答:
s(RCs+1)1=s1−s+RC11
L−1[s1−s+RC11]=1−e−RC1t,t≥0
(10)解答:
s(1+RCs)1−RCs=s1−s+RC12
L−1(s1−s+RC12)=1−2e−RCt,t≥0
(11)解答:
(s2+ω2)ω⋅(RCs+1)1
s2+ω2ω⋅s+RC1RC1=s2+ω2ms+n⋅s+RC1l
(s2+ω2)(s+RC1)ms2+RCms+ns+RCn+ls2+lω2=(s2+ω2)(s+RC1)RCω
(s2+ω2)(s+RC1)(m+l)s2+(n+RCm)s+lω2=(s2+ω2)(s+RC1)RCω
KaTeX parse error: Undefined control sequence: \matrix at position 10: \left\{ {\̲m̲a̲t̲r̲i̲x̲{ {m + l = 0}
n+RCm=0
RCn+lω2=RCω
KaTeX parse error: Undefined control sequence: \matrix at position 10: \left\{ {\̲m̲a̲t̲r̲i̲x̲{ {m = {{ - R…
n=1+(RCω)2ω
l=1+(RCω)2RCω
s2+ω2ω⋅RCs+11=s2+ω21+(RCω)2−RCωs+1+(RCω)2ω+s+RC11+(RCω)2RCω
1+(RCω)2−RCcos(ωt)+1+(RCω)21sin(ωt)+1+(RCω)2RCωe−RCt,t≥0
(12)解答:
s2+5s+64s+5=(s+2)(s+3)4s+5=s+2−3+s+37
L−1(s2+5s+64s+5)=−e−2t+7e−3t,t≥0
(13)解答:
s2+201s+200100(s+50)=s+11994900+s+20019915000
L−1(s2+201s+200100(s+50))=1994900e−t+19915000e−200t,t≥0
(14)解答:
(s+1)3⋅(s+2)s+3=(s+1)3A+(s+1)2B+s+1C+s+2D
D=(s+1)3s+3∣∣∣∣∣s=−2=−1
A=s+2s+3∣∣∣∣s=−1=2
B=dsd(s+2s+3)∣∣∣∣s=−1=s+21−(s+2)2s+3∣∣∣∣∣s=−1=−1
C=21⋅ds2d2(s+2s+3)∣∣∣∣s=−1=21(s+2)32(s+3)−(s+2)22∣∣∣∣∣s=−1=1
L−1((s+1)3(s+2)s+3)=t2e−t−te−t+e−t−e−2t,t≥0
05第五題
求下列函數的拉普拉斯逆變換:
F(s)=ln(s+9s)
求解:
本題應用到Laplace變換的一個性質,以下:
F(s)=∫0−∞f(t)e−stdt
F′(s)=dsd∫0−∞f(t)e−stdt=∫0−∞−t⋅f(t)e−stdt
t⋅f(t)=−L−1[dsdF(s)]
f(t)=L−1[ln(s+9s)]
−t⋅f(t)=L−1[dsdln(s+9s)]=L−1(−s+91+s1)=1−e−9t,t≥0
f(t)=t−1+t1e−9t,t≥0
若是使用MATLAB進行求解,結果以下:
>>ilaplace(log(s/(s+9)))
ans=(exp(-9*t)-1)/t
06第六題
求解:
(1)
x[n]=δ[n]
(2)
x[n]=δ[n+3]
(3)
x[n]=δ[n−1]
(4)
x[n]=−2δ[n−2]+δ[n]+2δ[n+1]
(5)
x[n]=anu[n]
(6)
x[n]=−anu[−n−1]
07第七題
求解:
(1)求解:
X(z)=z+0.5z
因爲
∣z∣>5,因此序列是右邊序列,所以序列爲:
x[n]=(−0.5)nu[n]
(2)求解:
zX(z)=(z+41)⋅(z+21)z−0.5=z+41−3+z+214
因爲
∣z∣>5,因此序列是右邊序列,所以序列爲:
x[n]=[−3(4−1)n+4(2−1)n]⋅u[n]
=(−41)n(−3+2n+2)⋅u[n]
(3)求解:
X(z)=1−41z−21−21z−1=z+21z
∣z∣>21
x[n]=(−21)n⋅u[n]
(4)求解:
zX(z)=z(1−az)z−a=z(z−a1)−a1(z−a)=z−a+z−a1a−a1
∣z∣>∣∣∣∣a1∣∣∣∣,
x[n]=−aδ[n]+(a−a1)⋅(a1)n⋅u[n]
08第八題
利用三種方法求解下面
X(z)的你變換
x[n]。
X(z)=(z−1)(z−2)10z,(∣z∣>2)
求解:
方法1:圍線積分方法:
由於
∣z∣>2,因此信號爲右邊序列。
x[n]=2πj1C∮X(z)⋅zn−1dz=2πj1C∮(z−1)(z−2)10zndz
x[n]=m∑Res[(z−1)(z−2)10zn]z=zm
Res[(z−1)(z−2)10zn]z=1=−10
Res[(z−1)(z−2)10zn]z=2=10⋅2n
x[n]=[−10+10⋅2n]⋅u[n]
方法2:長除法:
x[n]=10z−1+30z−2+70z−3+⋯
=10(2n−1)⋅u[n]
>> deconv([10,0,0,0,0,0,0,0,0],[1,-3,2])'
ans=10 30 70 150 310 630 1270
方法3:部分因式分解法:
zX(z)=(z−1)(z−2)10=z−1−10+z−210
X(z)=z−1−10z+z−210z
x[n]=−10⋅u[n]+10⋅2nu[n]
使用MATLAB對應的變換命令:
>>iztrans(10*z/(z-1)/(z-2))
ans=10*2^n-10
09第九題
求解:
(1)求解:
zX(z)=(z−0.5)(z−0.25)10z=z−0.520+z−0.25