Tensorflow神經網絡預測股票均價

1、簡介

1. 目標:

已知股票的「開盤價」和「收盤價」,利用神經網絡來預測「收盤均價」html

2. 數據源:

日期(data):[ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.]
開盤價(beginPrice):[2438.71,2500.88,2534.95,2512.52,2594.04,2743.26,2697.47,2695.24,2678.23,2722.13,2674.93,2744.13,2717.46,2832.73,2877.40]
收盤價(endPrice):[2511.90,2538.26,2510.68,2591.66,2732.98,2701.69,2701.29,2678.67,2726.50,2681.50,2739.17,2715.07,2823.58,2864.90,2919.08]python

3. 預測方法

(1)背景知識介紹

神經網絡介紹:https://blog.csdn.net/leiting_imecas/article/details/60463897
激勵函數relu()介紹:https://www.cnblogs.com/neopenx/p/4453161.htmlapi

(2)案例分析

  • 原始數據:data、endPrice
  • 輸入層:data/1.4 —> x:dateNormal、 endPrice / 3000 —> y:priceNormal
  • 隱藏層:wb1(15x10) = x(15x1) * w1(1x10) + b1(1x10)
    layer1 = tf.nn.relu(wb1)
  • 輸出層:wb2(15x1) = layer1(15x10) * w2(10x1) + b2(15x1)
    layer2 = tf.nn.relu(wb2)
  • 梯度降低: 真實值y和計算值layer2的標準差用進行梯度降低,每次降低0.1;
  • 預測結果:pred = sess.run(layer2,feed_dict={x:dateNormal})
    predPrice = pred*3000

2、輸入數據

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

date = np.linspace(1,15,15)
# 開始是1,結束是15,有15個數的等差數列
print(date)

beginPrice = np.array([2438.71,2500.88,2534.95,2512.52,2594.04,2743.26,2697.47,2695.24,2678.23,2722.13,2674.93,2744.13,2717.46,2832.73,2877.40])
# 開盤價
endPrice = np.array([2511.90,2538.26,2510.68,2591.66,2732.98,2701.69,2701.29,2678.67,2726.50,2681.50,2739.17,2715.07,2823.58,2864.90,2919.08]
)
# 收盤價
複製代碼

結果:數組

[ 1.  2.  3.  4.  5.  6.  7.  8.  9. 10. 11. 12. 13. 14. 15.]
複製代碼

函數解析:網絡

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)dom

  • 解析:
    該函數返回一組具備相同間隔的數據/採樣值,數據的間隔經過計算得到(經常使用與來建立等差數列)
  • 參數:
    start:序列的起始值
    stop:序列的終止值,除非endpoint被設置爲False。當endpoint爲True時,數據的間隔:(stop-start)/num。當endpoint爲False時,數據的間隔:(stop-start)/(num+1)。
    num:採樣的數目,默認值爲50
    endpoint:爲真則stop爲最後一個採樣值,默認爲真。
    retstep:爲真則返回(samples, step),step爲不一樣採樣值的間距
    dtype:輸出序列的類型。
    返回:
    samples:n維的數組
    step:採樣值的間距

3、繪製圖表

plt.figure()
for i in range(0,15):
    dateOne = np.zeros([2])
    # 建一個兩列值爲0的矩陣
    dateOne[0] = i;
    # 第一列的 0-14
    dateOne[1] = i;
    # 第二列的 0-14
    priceOne = np.zeros([2])
    # 建一個兩列值爲0的矩陣
    priceOne[0] = beginPrice[i]
    # 把開盤價輸入第一列
    priceOne[1] = endPrice[i]
    # 把收盤價輸入第二列
    if endPrice[i] > beginPrice[i]:
        # 若是收盤價 大於 開盤價
        plt.plot(dateOne,priceOne,'r',lw=8)
        # 條形是紅色,寬度爲8
    else:
        plt.plot(dateOne,priceOne,'g',lw=8)
        # 條形是綠色,寬度爲8
複製代碼

結果: ide

函數解析:函數

一、range(start,stop,step)ui

  • 只給一個參數 s,表示 從0到s
    例如:range(5)
    結果:[0,1,2,3,4]
  • 兩個參數,s,e,表示從s到e
    例如:range(5,10)
    結果:5,6,7,8,9
  • 三個參數 s,e,i 表示從s到e,間隔i取數
    例如:range(0,10,2)
    結果:[0,2,4,6,8]

4、輸入層 input layer

dateNormal = np.zeros([15,1])
# 建立一個15行,1列的矩陣
priceNormal = np.zeros([15,1])
for i in range(0,15):
    dateNormal[i,0] = i/14.0;
    # 日期的值,最大值爲14
    priceNormal[i,0] = endPrice[i]/3000.0;
    # 價格的值,最大值爲3000
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])
複製代碼

函數解析:google

tf.placeholder(dtype, shape=None, name=None)

  • 解析:此函數能夠理解爲形參,用於定義過程,在執行的時候再賦具體的值
  • 參數:
    dtype:數據類型。經常使用的是tf.float32,tf.float64等數值類型
    shape:數據形狀。默認是None,就是一維值,也能夠是多維,好比[2,3], [None, 3]表示列是3,行不定
    name:名稱。
  • 返回:
    Tensor 類型

5、隱藏層(hidden layer)

w1 = tf.Variable(tf.random_uniform([1,10],0,1))
# 建立一個1行10列的矩陣,最小值爲0,最大值爲1
b1 = tf.Variable(tf.zeros([1,10]))
# 建立一個1行10列的矩陣,值都爲0
wb1 = tf.matmul(x,w1)+b1
# wb1 = x * w1 + b1
layer1 = tf.nn.relu(wb1) 
# 激勵函數的類型:https://tensorflow.google.cn/api_guides/python/nn#Activation_Functions
# 激勵函數的做用:https://zhuanlan.zhihu.com/p/25279356
複製代碼

6、輸出層(output layer)

w2 = tf.Variable(tf.random_uniform([10,1],0,1))
b2 = tf.Variable(tf.zeros([15,1]))
wb2 = tf.matmul(layer1,w2)+b2
# wb2 = wb1 * w2 + b2
layer2 = tf.nn.relu(wb2)

loss = tf.reduce_mean(tf.square(y-layer2))
# 計算真實值y和計算值layer2的標準差
# 方差 s^2=[(x1-x)^2+(x2-x)^2+......(xn-x)^2]/(n) (x爲平均數)
# 標準差=方差的算術平方根
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# 每次梯度降低0.1,目的是縮小真實值y和計算值layer2的差值
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(0,10000):
        sess.run(train_step,feed_dict={x:dateNormal,y:priceNormal})
        # feed_dict是一個字典,在字典中須要給出每個用到的佔位符的取值,每次迭代選取的數據只會擁有佔位符這一個結點。
        # 訓練出w一、w二、b一、b2,可是還須要檢測是否有效
    pred = sess.run(layer2,feed_dict={x:dateNormal})
    # 訓練完的預測結果值
    predPrice = np.zeros([15,1])
    for i in range(0,15):
        predPrice[i,0]=(pred*3000)[i,0]
        # pred須要乘以3000是由於前面 priceNormal[i,0] = endPrice[i]/3000.0;
    plt.plot(date,predPrice,'b',lw=1)
plt.show()
複製代碼

結果:

函數解析:

tf.reduce_mean(input_tensor,axis=None,keepdims=None,name=None,reduction_indices=None,keep_dims=None)

  • 解析:計算張量維度上元素的平均值。
  • 參數: input_tensor:張量減小。應該有數字類型。 axis:要減少的尺寸。若是None(默認)縮小全部尺寸。必須在範圍內 [ rank(input_tensor), rank(input_tensor) )。 keepdims:若是爲true,則保留長度爲1的縮小尺寸。 name:操做的名稱(可選)。 reduction_indices:軸的舊(已棄用)名稱。 keep_dims:已過期的別名keepdims。
相關文章
相關標籤/搜索