ElasticSearch5.x實踐_day05_01_Mapping_Field datatype

1、Field datatype(字段數據類型)

1.1string類型

ELasticsearch 5.X以後的字段類型再也不支持string,由text或keyword取代。 若是仍使用string,會給出警告。前端

PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "title": {
          "type":  "string"
        }
      }
    }
  }
}
#! Deprecation: The [string] field is deprecated, please use [text] or [keyword] instead on [title]
{
  "acknowledged": true,
  "shards_acknowledged": true
}

1.2 text類型

text取代了string,當一個字段是要被全文搜索的,好比Email內容、產品描述,應該使用text類型。設置text類型之後,字段內容會被分析,在生成倒排索引之前,字符串會被分析器分紅一個一個詞項。text類型的字段不用於排序,不多用於聚合(termsAggregation除外)。node

把full_name字段設爲text類型的Mapping以下:json

PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "full_name": {
          "type":  "text"
        }
      }
    }
  }
}

1.3 keyword類型

keyword類型適用於索引結構化的字段,好比email地址、主機名、狀態碼和標籤。若是字段須要進行過濾(好比查找已發佈博客中status屬性爲published的文章)、排序、聚合。keyword類型的字段只能經過精確值搜索到。數組

1.4 數字類型

對於數字類型,ELasticsearch支持如下幾種:app

類型 取值範圍
long -2^63至2^63-1
integer -2^31至2^31-1
short -32,768至32768
byte -128至127
double 64位雙精度IEEE 754浮點類型
float 32位單精度IEEE 754浮點類型
half_float 16位半精度IEEE 754浮點類型
scaled_float 縮放類型的的浮點數(好比價格只須要精確到分,price爲57.34的字段縮放因子爲100,存起來就是5734)  scaled縮放 [skeɪld]

對於float、half_float和scaled_float,-0.0和+0.0是不一樣的值,使用term查詢查找-0.0不會匹配+0.0,一樣range查詢中上邊界是-0.0不會匹配+0.0,下邊界是+0.0不會匹配-0.0。工具

對於數字類型的數據,選擇以上數據類型的注意事項:ui

  1. 在知足需求的狀況下,儘量選擇範圍小的數據類型。好比,某個字段的取值最大值不會超過100,那麼選擇byte類型便可。迄今爲止吉尼斯記錄的人類的年齡的最大值爲134歲,對於年齡字段,short足矣。字段的長度越短,索引和搜索的效率越高。
  2. 優先考慮使用帶縮放因子的浮點類型。

例子:編碼

POST my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "number_of_bytes": {
          "type": "integer"
        },
        "time_in_seconds": {
          "type": "float"
        },
        "price": {
          "type": "scaled_float",
          "scaling_factor": 100
        }
      }
    }
  }
}

1.5 Object類型

JSON天生具備層級關係,文檔會包含嵌套的對象:加密

POST my_index/my_type/1
{ 
  "region": "US",
  "manager": { 
    "age":     30,
    "name": { 
      "first": "John",
      "last":  "Smith"
    }
  }
}

上面的文檔中,總體是一個JSON,JSON中包含一個manager,manager又包含一個name。最終,文檔會被索引成一平的key-value對:spa

{
  "region":             "US",
  "manager.age":        30,
  "manager.name.first": "John",
  "manager.name.last":  "Smith"
}

上面文檔結構的Mapping以下:

PUT my_index
{
  "mappings": {
    "my_type": { 
      "properties": {
        "region": {
          "type": "keyword"
        },
        "manager": { 
          "properties": {
            "age":  { "type": "integer" },
            "name": { 
              "properties": {
                "first": { "type": "text" },
                "last":  { "type": "text" }
              }
            }
          }
        }
      }
    }
  }
}

1.6 date類型

JSON中沒有日期類型,因此在ELasticsearch中,日期類型能夠是如下幾種:

  1. 日期格式的字符串:e.g. 「2015-01-01」 or 「2015/01/01 12:10:30」.
  2. long類型的毫秒數( milliseconds-since-the-epoch)
  3. integer的秒數(seconds-since-the-epoch)

日期格式能夠自定義,若是沒有自定義,默認格式以下:

"strict_date_optional_time||epoch_millis"
PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "date": {
          "type": "date" 
        }
      }
    }
  }
}

POST my_index/my_type/1
{ "date": "2015-01-01" } 

POST my_index/my_type/2
{ "date": "2015-01-01T12:10:30Z" } 

POST my_index/my_type/3
{ "date": 1420070400001 } 

POST my_index/_search
{
  "sort": { "date": "asc"} 
}

查看三個日期類型:

{
  "took": 0,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 1,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "2",
        "_score": 1,
        "_source": {
          "date": "2015-01-01T12:10:30Z"
        }
      },
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "1",
        "_score": 1,
        "_source": {
          "date": "2015-01-01"
        }
      },
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "3",
        "_score": 1,
        "_source": {
          "date": 1420070400001
        }
      }
    ]
  }
}

排序結果:

{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": null,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "1",
        "_score": null,
        "_source": {
          "date": "2015-01-01"
        },
        "sort": [
          1420070400000
        ]
      },
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "3",
        "_score": null,
        "_source": {
          "date": 1420070400001
        },
        "sort": [
          1420070400001
        ]
      },
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "2",
        "_score": null,
        "_source": {
          "date": "2015-01-01T12:10:30Z"
        },
        "sort": [
          1420114230000
        ]
      }
    ]
  }
}

1.7 Array類型

ELasticsearch沒有專用的數組類型,默認狀況下任何字段均可以包含一個或者多個值,可是一個數組中的值要是同一種類型。例如:

  1. 字符數組: [ 「one」, 「two」 ]
  2. 整型數組:[1,3]
  3. 嵌套數組:[1,[2,3]],等價於[1,2,3]
  4. 對象數組:[ { 「name」: 「Mary」, 「age」: 12 }, { 「name」: 「John」, 「age」: 10 }]

注意事項:

  • 動態添加數據時,數組的第一個值的類型決定整個數組的類型
  • 混合數組類型是不支持的,好比:[1,」abc」]
  • 數組能夠包含null值,空數組[ ]會被當作missing field對待。

1.8 binary類型

binary類型接受base64編碼的字符串,默認不存儲也不可搜索。

PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "name": {
          "type": "text"
        },
        "blob": {
          "type": "binary"
        }
      }
    }
  }
}

POST my_index/my_type/1
{
  "name": "Some binary blob",
  "blob": "U29tZSBiaW5hcnkgYmxvYg==" 
}

搜索blog字段:

POST my_index/_search
{
  "query": {
    "match": {
      "blob": "test" 
    }
  }
}

返回結果:
{
  "error": {
    "root_cause": [
      {
        "type": "query_shard_exception",
        "reason": "Binary fields do not support searching",
        "index_uuid": "fgA7UM5XSS-56JO4F4fYug",
        "index": "my_index"
      }
    ],
    "type": "search_phase_execution_exception",
    "reason": "all shards failed",
    "phase": "query",
    "grouped": true,
    "failed_shards": [
      {
        "shard": 0,
        "index": "my_index",
        "node": "3dQd1RRVTMiKdTckM68nPQ",
        "reason": {
          "type": "query_shard_exception",
          "reason": "Binary fields do not support searching",
          "index_uuid": "fgA7UM5XSS-56JO4F4fYug",
          "index": "my_index"
        }
      }
    ]
  },
  "status": 400
}

Base64加密、解碼工具:http://www1.tc711.com/tool/BASE64.htm

1.9 ip類型

ip類型的字段用於存儲IPV4或者IPV6的地址。

PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "ip_addr": {
          "type": "ip"
        }
      }
    }
  }
}

POST my_index/my_type/1
{
  "ip_addr": "192.168.1.1"
}

POST my_index/_search
{
  "query": {
    "term": {
      "ip_addr": "192.168.0.0"
    }
  }
}

1.10 range類型

range類型支持如下幾種:

類型 範圍
integer_range -2^31至2^31-1
float_range 32-bit IEEE 754
long_range -2^63至2^63-1
double_range 64-bit IEEE 754
date_range 64位整數,毫秒計時

range類型的使用場景:好比前端的時間選擇表單、年齡範圍選擇表單等。
例子:

PUT range_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "expected_attendees": {
          "type": "integer_range"
        },
        "time_frame": {
          "type": "date_range", 
          "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
        }
      }
    }
  }
}

POST range_index/my_type/1
{
  "expected_attendees" : { 
    "gte" : 10,
    "lte" : 20
  },
  "time_frame" : { 
    "gte" : "2015-10-31 12:00:00", 
    "lte" : "2015-11-01"
  }
}

上面代碼建立了一個range_index索引,expected_attendees的人數爲10到20,時間是2015-10-31 12:00:00至2015-11-01。

查詢:

"query" : {
    "range" : {

      "time_frame" : {
        "gte" : "2015-08-01",
        "lte" : "2015-12-01",
        "relation" : "within"
      }
    }
  }

POST range_index/_search
{
  "query" : {
    "range" : {
      "time_frame" : { 
        "gte" : "2015-08-01",
        "lte" : "2015-12-01",
        "relation" : "within" 
      }
    }
  }
}

查詢結果:

{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1,
    "hits": [
      {
        "_index": "range_index",
        "_type": "my_type",
        "_id": "1",
        "_score": 1,
        "_source": {
          "expected_attendees": {
            "gte": 10,
            "lte": 20
          },
          "time_frame": {
            "gte": "2015-10-31 12:00:00",
            "lte": "2015-11-01"
          }
        }
      }
    ]
  }
}

1.11 nested類型

nested嵌套類型是object中的一個特例,可讓array類型的Object獨立索引和查詢。 使用Object類型有時會出現問題,好比文檔 my_index/my_type/1的結構以下:

POST my_index/my_type/1
{
  "group" : "fans",
  "user" : [ 
    {
      "first" : "John",
      "last" :  "Smith"
    },
    {
      "first" : "Alice",
      "last" :  "White"
    }
  ]
}

user字段會被動態添加爲Object類型。
最後會被轉換爲如下平整的形式:

{
  "group" :        "fans",
  "user.first" : [ "alice", "john" ],
  "user.last" :  [ "smith", "white" ]
}

user.first和user.last會被平鋪爲多值字段,Alice和White之間的關聯關係會消失。上面的文檔會不正確的匹配如下查詢(雖然能搜索到,實際上不存在Alice Smith):

POST my_index/_search
{
  "query": {
    "bool": {
      "must": [
        { "match": { "user.first": "Alice" }},
        { "match": { "user.last":  "Smith" }}
      ]
    }
  }
}

使用nested字段類型解決Object類型的不足:

PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "user": {
          "type": "nested" 
        }
      }
    }
  }
}

POST my_index/my_type/1
{
  "group" : "fans",
  "user" : [
    {
      "first" : "John",
      "last" :  "Smith"
    },
    {
      "first" : "Alice",
      "last" :  "White"
    }
  ]
}

POST my_index/_search
{
  "query": {
    "nested": {
      "path": "user",
      "query": {
        "bool": {
          "must": [
            { "match": { "user.first": "Alice" }},
            { "match": { "user.last":  "Smith" }} 
          ]
        }
      }
    }
  }
}

POST my_index/_search
{
  "query": {
    "nested": {
      "path": "user",
      "query": {
        "bool": {
          "must": [
            { "match": { "user.first": "Alice" }},
            { "match": { "user.last":  "White" }} 
          ]
        }
      },
      "inner_hits": { 
        "highlight": {
          "fields": {
            "user.first": {}
          }
        }
      }
    }
  }
}

1.12token_count類型

token_count用於統計詞頻:

PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "name": { 
          "type": "text",
          "fields": {
            "length": { 
              "type":     "token_count",
              "analyzer": "standard"
            }
          }
        }
      }
    }
  }
}

POST my_index/my_type/1
{ "name": "John Smith" }

POST my_index/my_type/2
{ "name": "Rachel Alice Williams" }

POST my_index/_search
{
  "query": {
    "term": {
      "name.length": 3 
    }
  }
}

1.13 geo point 類型

地理位置信息類型用於存儲地理位置信息的經緯度:

PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "location": {
          "type": "geo_point"
        }
      }
    }
  }
}

POST my_index/my_type/1
{
  "text": "Geo-point as an object",
  "location": { 
    "lat": 41.12,
    "lon": -71.34
  }
}

POST my_index/my_type/2
{
  "text": "Geo-point as a string",
  "location": "41.12,-71.34" 
}

POST my_index/my_type/3
{
  "text": "Geo-point as a geohash",
  "location": "drm3btev3e86" 
}

POST my_index/my_type/4
{
  "text": "Geo-point as an array",
  "location": [ -71.34, 41.12 ] 
}

POST my_index/_search
{
  "query": {
    "geo_bounding_box": { 
      "location": {
        "top_left": {
          "lat": 42,
          "lon": -72
        },
        "bottom_right": {
          "lat": 40,
          "lon": -74
        }
      }
    }
  }
}
相關文章
相關標籤/搜索