閱讀原文python
根據官網的資料,總結出PaddlePaddle支持多種不一樣的數據格式,包括四種數據類型和三種序列格式:api
api以下:緩存
paddle.v2.data_type.dense_vector(dim, seq_type=0)bash
paddle.v2.data_type.sparse_binary_vector(dim, seq_type=0)網絡
paddle.v2.data_type.sparse_vector(dim, seq_type=0)多線程
paddle.v2.data_type.integer_value(value_range, seq_type=0)框架
不一樣的數據類型和序列模式返回的格式不一樣,以下表:dom
其中f表示浮點數,i表示整數分佈式
注意:對sparse_binary_vector和sparse_float_vector,PaddlePaddle存的是有值位置的索引。例如,函數
對一個5維非序列的稀疏01向量 [0, 1, 1, 0, 0] ,類型是sparse_binary_vector,返回的是 [1, 2] 。(由於只有第1位和第2位有值)
對一個5維非序列的稀疏浮點向量 [0, 0.5, 0.7, 0, 0] ,類型是sparse_float_vector,返回的是 [(1, 0.5), (2, 0.7)] 。(由於只有第一位和第二位有值,分別是0.5和0.7)
咱們瞭解了上文的四種基本數據格式和三種序列模式後,在處理本身的數據時能夠根據需求選擇,可是處理完數據後如何把數據放到模型裏去訓練呢?咱們知道,基本的方法通常有兩種:
一次性加載到內存:模型訓練時直接從內存中取數據,不須要大量的IO消耗,速度快,適合少許數據。
加載到磁盤/HDFS/共享存儲等:這樣不用佔用內存空間,在處理大量數據時通常採起這種方式,可是缺點是每次數據加載進來也是一次IO的開銷,很是影響速度。
在PaddlePaddle中咱們能夠有三種模式來讀取數據:分別是reader、reader creator和reader decorator,這三者有什麼區別呢?
reader:從本地、網絡、分佈式文件系統HDFS等讀取數據,也可隨機生成數據,並返回一個或多個數據項。
reader creator:一個返回reader的函數。
reader decorator:裝飾器,可組合一個或多個reader。
咱們先以reader爲例,爲房價數據(斯坦福吳恩達的公開課第一課舉例的數據)建立一個reader:
reader = paddle.dataset.uci_housing.train()
shuffle_reader = paddle.reader.shuffle(reader,buf_size= 100)
batch_reader = paddle.batch(shuffle_reader,batch_size = 2)
這三種方式也能夠組合起來放一塊:
reader = paddle.batch(
paddle.reader.shuffle(
uci_housing.train(),
buf_size = 100),
batch_size=2)
複製代碼
能夠以一個直觀的圖來表示:
若是想要生成一個簡單的隨機數據,以reader creator爲例:
def reader_creator(): def reader(): while True: yield numpy.random.uniform(-1,1,size=784) return reader
  源碼見creator.py, 支持四種格式:np_array,text_file,RecordIO和cloud_reader
__all__ = ['np_array', 'text_file', "cloud_reader"]
def np_array(x):
""" Creates a reader that yields elements of x, if it is a numpy vector. Or rows of x, if it is a numpy matrix. Or any sub-hyperplane indexed by the highest dimension. :param x: the numpy array to create reader from. :returns: data reader created from x. """
def reader():
if x.ndim < 1:
yield x
for e in x:
yield e
return reader
def text_file(path):
""" Creates a data reader that outputs text line by line from given text file. Trailing new line ('\\\\n') of each line will be removed. :path: path of the text file. :returns: data reader of text file """
def reader():
f = open(path, "r")
for l in f:
yield l.rstrip('\n')
f.close()
return reader
def recordio(paths, buf_size=100):
""" Creates a data reader from given RecordIO file paths separated by ",", glob pattern is supported. :path: path of recordio files, can be a string or a string list. :returns: data reader of recordio files. """
import recordio as rec
import paddle.v2.reader.decorator as dec
import cPickle as pickle
def reader():
if isinstance(paths, basestring):
path = paths
else:
path = ",".join(paths)
f = rec.reader(path)
while True:
r = f.read()
if r is None:
break
yield pickle.loads(r)
f.close()
return dec.buffered(reader, buf_size)
pass_num = 0
def cloud_reader(paths, etcd_endpoints, timeout_sec=5, buf_size=64):
""" Create a data reader that yield a record one by one from the paths: :paths: path of recordio files, can be a string or a string list. :etcd_endpoints: the endpoints for etcd cluster :returns: data reader of recordio files. .. code-block:: python from paddle.v2.reader.creator import cloud_reader etcd_endpoints = "http://127.0.0.1:2379" trainer.train.( reader=cloud_reader(["/work/dataset/uci_housing/uci_housing*"], etcd_endpoints), ) """
import os
import cPickle as pickle
import paddle.v2.master as master
c = master.client(etcd_endpoints, timeout_sec, buf_size)
if isinstance(paths, basestring):
path = [paths]
else:
path = paths
c.set_dataset(path)
def reader():
global pass_num
c.paddle_start_get_records(pass_num)
pass_num += 1
while True:
r, e = c.next_record()
if not r:
if e != -2:
print "get record error: ", e
break
yield pickle.loads(r)
return reader
複製代碼
若是想要讀取同時讀取兩部分的數據,那麼能夠定義兩個reader,合併後對其進行shuffle。如我想讀取全部用戶對比車系的數據和瀏覽車系的數據,能夠定義兩個reader,分別爲contrast()和view(),而後經過預約義的reader decorator緩存並組合這些數據,在對合並後的數據進行亂序操做。源碼見decorator.py
data = paddle.reader.shuffle(
paddle.reader.compose(
paddle.reader(contradt(contrast_path),buf_size = 100),
paddle.reader(view(view_path),buf_size = 200), 500)
複製代碼
這樣有一個很大的好處,就是組合特徵來訓練變得更容易了!傳統的跑模型的方法是,肯定label和feature,儘量多的找合適的feature扔到模型裏去訓練,這樣咱們就須要作一張大表,訓練完後咱們能夠分析某些特徵的重要性而後從新增長或減小一些feature來進行訓練,這樣咱們有須要對原來的label-feature表進行修改,若是數據量小沒啥影響,就是麻煩點,可是數據量大的話須要每一次增長feature,和主鍵、label來join的操做都會很耗時,若是採起這種方式的話,咱們能夠對某些同一類的特徵作成一張表,數據存放的地址存爲一個變量名,每次跑模型的時候想選取幾類特徵,就建立幾個reader,用reader decorator 組合起來,最後再shuffle灌倒模型裏去訓練。這!樣!是!不!是!很!方!便!
若是沒理解,我舉一個實例,假設咱們要預測用戶是否會買車,label是買車 or 不買車,feature有瀏覽車系、對比車系、關注車系的功能偏好等等20個,傳統的思惟是作成這樣一張表:
若是想要減小feature_2,看看feature_2對模型的準確率影響是否很大,那麼咱們須要在這張表裏去掉這一列,想要增長一個feature的話,也須要在feature裏增長一列,若是用reador decorator的話,咱們能夠這樣作數據集:
把相同類型的feature放在一塊兒,不用頻繁的join減小時間,一共作四個表,建立4個reador:
data = paddle.reader.shuffle(
paddle.reader.compose(
paddle.reader(table1(table1_path),buf_size = 100),
paddle.reader(table2(table2_path),buf_size = 100),
paddle.reader(table3(table3_path),buf_size = 100),
paddle.reader(table4(table4_path),buf_size = 100),
500)
複製代碼
若是新發現了一個特徵,想嘗試這個特徵對模型提升準確率有沒有用,能夠再單獨把這個特徵數據提取出來,再增長一個reader,用reader decorator組合起來,shuffle後放入模型裏跑就好了。
仍是以手寫數字爲例,對數據進行處理後並劃分train和test,只須要4步便可:
1.指定數據地址
import paddle.v2.dataset.common
import subprocess
import numpy
import platform
__all__ = ['train', 'test', 'convert']
URL_PREFIX = 'http://yann.lecun.com/exdb/mnist/'
TEST_IMAGE_URL = URL_PREFIX + 't10k-images-idx3-ubyte.gz'
TEST_IMAGE_MD5 = '9fb629c4189551a2d022fa330f9573f3'
TEST_LABEL_URL = URL_PREFIX + 't10k-labels-idx1-ubyte.gz'
TEST_LABEL_MD5 = 'ec29112dd5afa0611ce80d1b7f02629c'
TRAIN_IMAGE_URL = URL_PREFIX + 'train-images-idx3-ubyte.gz'
TRAIN_IMAGE_MD5 = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
TRAIN_LABEL_URL = URL_PREFIX + 'train-labels-idx1-ubyte.gz'
TRAIN_LABEL_MD5 = 'd53e105ee54ea40749a09fcbcd1e9432'
複製代碼
2.建立reader creator
def reader_creator(image_filename, label_filename, buffer_size):
# 建立一個reader
def reader():
if platform.system() == 'Darwin':
zcat_cmd = 'gzcat'
elif platform.system() == 'Linux':
zcat_cmd = 'zcat'
else:
raise NotImplementedError()
m = subprocess.Popen([zcat_cmd, image_filename], stdout=subprocess.PIPE)
m.stdout.read(16)
l = subprocess.Popen([zcat_cmd, label_filename], stdout=subprocess.PIPE)
l.stdout.read(8)
try: # reader could be break.
while True:
labels = numpy.fromfile(
l.stdout, 'ubyte', count=buffer_size).astype("int")
if labels.size != buffer_size:
break # numpy.fromfile returns empty slice after EOF.
images = numpy.fromfile(
m.stdout, 'ubyte', count=buffer_size * 28 * 28).reshape(
(buffer_size, 28 * 28)).astype('float32')
images = images / 255.0 * 2.0 - 1.0
for i in xrange(buffer_size):
yield images[i, :], int(labels[i])
finally:
m.terminate()
l.terminate()
return reader
複製代碼
3.建立訓練集和測試集
def train():
""" 建立mnsit的訓練集 reader creator 返回一個reador creator,每一個reader裏的樣本都是圖片的像素值,在區間[0,1]內,label爲0~9 返回:training reader creator """
return reader_creator(
paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist',
TRAIN_IMAGE_MD5),
paddle.v2.dataset.common.download(TRAIN_LABEL_URL, 'mnist',
TRAIN_LABEL_MD5), 100)
def test():
""" 建立mnsit的測試集 reader creator 返回一個reador creator,每一個reader裏的樣本都是圖片的像素值,在區間[0,1]內,label爲0~9 返回:testreader creator """
return reader_creator(
paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist',
TEST_IMAGE_MD5),
paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist',
TEST_LABEL_MD5), 100)
複製代碼
4.下載數據並轉換成相應格式
def fetch():
paddle.v2.dataset.common.download(TRAIN_IMAGE_URL, 'mnist', TRAIN_IMAGE_MD5)
paddle.v2.dataset.common.download(TRAIN_LABEL_URL, 'mnist', TRAIN_LABEL_MD5)
paddle.v2.dataset.common.download(TEST_IMAGE_URL, 'mnist', TEST_IMAGE_MD5)
paddle.v2.dataset.common.download(TEST_LABEL_URL, 'mnist', TRAIN_LABEL_MD5)
def convert(path):
""" 將數據格式轉換爲 recordio format """
paddle.v2.dataset.common.convert(path, train(), 1000, "minist_train")
paddle.v2.dataset.common.convert(path, test(), 1000, "minist_test")
複製代碼
若是想換成本身的訓練數據,只須要按照步驟改爲本身的數據地址,建立相應的reader creator(或者reader decorator)便可。
這是圖像的例子,若是咱們想訓練一個文本模型,作一個情感分析,這個時候如何處理數據呢?步驟也很簡單。假設咱們有一堆數據,每一行爲一條樣本,以 \t 分隔,第一列是類別標籤,第二列是輸入文本的內容,文本內容中的詞語以空格分隔。如下是兩條示例數據:
1.建立reader
def train_reader(data_dir, word_dict, label_dict):
def reader():
UNK_ID = word_dict["<UNK>"]
word_col = 0
lbl_col = 1
for file_name in os.listdir(data_dir):
with open(os.path.join(data_dir, file_name), "r") as f:
for line in f:
line_split = line.strip().split("\t")
word_ids = [
word_dict.get(w, UNK_ID)
for w in line_split[word_col].split()
]
yield word_ids, label_dict[line_split[lbl_col]]
return reader
複製代碼
返回類型爲: paddle.data_type.integer_value_sequence(詞語在字典的序號)和 paddle.data_type.integer_value(類別標籤)
2.組合讀取方式
train_reader = paddle.batch(
paddle.reader.shuffle(
reader.train_reader(train_data_dir, word_dict, lbl_dict),
buf_size=1000),
batch_size=batch_size)
複製代碼
完整的代碼以下(加上了劃分train和test部分):
train_reader = paddle.batch(
paddle.reader.shuffle(
reader.train_reader(train_data_dir, word_dict, lbl_dict),
buf_size=1000),
batch_size=batch_size)
  
完整的代碼以下(加上了劃分train和test部分):
import os
def train_reader(data_dir, word_dict, label_dict):
""" 建立訓練數據reader :param data_dir: 數據地址. :type data_dir: str :param word_dict: 詞典地址, 詞典裏必須有 "UNK" . :type word_dict:python dict :param label_dict: label 字典的地址 :type label_dict: Python dict """
def reader():
UNK_ID = word_dict["<UNK>"]
word_col = 1
lbl_col = 0
for file_name in os.listdir(data_dir):
with open(os.path.join(data_dir, file_name), "r") as f:
for line in f:
line_split = line.strip().split("\t")
word_ids = [
word_dict.get(w, UNK_ID)
for w in line_split[word_col].split()
]
yield word_ids, label_dict[line_split[lbl_col]]
return reader
def test_reader(data_dir, word_dict):
""" 建立測試數據reader :param data_dir: 數據地址. :type data_dir: str :param word_dict: 詞典地址, 詞典裏必須有 "UNK" . :type word_dict:python dict """
def reader():
UNK_ID = word_dict["<UNK>"]
word_col = 1
for file_name in os.listdir(data_dir):
with open(os.path.join(data_dir, file_name), "r") as f:
for line in f:
line_split = line.strip().split("\t")
if len(line_split) < word_col: continue
word_ids = [
word_dict.get(w, UNK_ID)
for w in line_split[word_col].split()
]
yield word_ids, line_split[word_col]
return reader
複製代碼
這篇文章主要講了在paddlepaddle裏如何加載本身的數據集,轉換成相應的格式,並劃分train和test。咱們在使用一個框架的時候一般會先去跑幾個簡單的demo,可是若是不用常見的demo的數據,本身作一個實際的項目,完整的跑通一個模型,這才表明咱們掌握了這個框架的基本應用知識。跑一個模型第一步就是數據預處理,在paddlepaddle裏,提供的方式很是簡單,可是有不少優勢:
而我以前使用過mxnet來訓練車牌識別的模型,50w的圖片數據想要一次訓練是很是慢的,這樣的話就有兩個解決方法:一是批量訓練,這一點大多數的框架都會有, 二是轉換成mxnet特有的rec格式,提升讀取效率,能夠經過im2rec.py將圖片轉換,比較麻煩,若是是tesnorflow,也有相對應的特定格式tfrecord,這幾種方式各有優劣,從易用性上,paddlepaddle是比較簡單的。
轉載:寬客在線