儘管Hadoop框架是用java寫的,可是Hadoop程序不限於java,能夠用python、C++、ruby等。本例子中直接用python寫一個MapReduce實例,而不是用Jython把python代碼轉化成jar文件。css
例子的目的是統計輸入文件的單詞的詞頻。html
使用python寫MapReduce的「訣竅」是利用Hadoop流的API,經過STDIN(標準輸入)、STDOUT(標準輸出)在Map函數和Reduce函數之間傳遞數據。java
咱們惟一須要作的是利用Python的sys.stdin讀取輸入數據,並把咱們的輸出傳送給sys.stdout。Hadoop流將會幫助咱們處理別的任何事情。python
1.1 Map階段:mapper.pyshell
在這裏,咱們假設把文件保存到hadoop-0.20.2/test/code/mapper.pysegmentfault
#!/usr/bin/env python import sys for line in sys.stdin: line = line.strip() words = line.split() for word in words: print "%s\t%s" % (word, 1)
文件從STDIN讀取文件。把單詞切開,並把單詞和詞頻輸出STDOUT。Map腳本不會計算單詞的總數,而是輸出<word> 1。在咱們的例子中,咱們讓隨後的Reduce階段作統計工做。ruby
爲了是腳本可執行,增長mapper.py的可執行權限app
chmod +x hadoop-0.20.2/test/code/mapper.py
1.2 Reduce階段:reducer.py框架
在這裏,咱們假設把文件保存到hadoop-0.20.2/test/code/reducer.py分佈式
#!/usr/bin/env python from operator import itemgetter import sys current_word = None current_count = 0 word = None for line in sys.stdin: line = line.strip() word, count = line.split('\t', 1) try: count = int(count) except ValueError: #count若是不是數字的話,直接忽略掉 continue if current_word == word: current_count += count else: if current_word: print "%s\t%s" % (current_word, current_count) current_count = count current_word = word if word == current_word: #不要忘記最後的輸出 print "%s\t%s" % (current_word, current_count)
文件會讀取mapper.py 的結果做爲reducer.py 的輸入,並統計每一個單詞出現的總的次數,把最終的結果輸出到STDOUT。
爲了是腳本可執行,增長reducer.py的可執行權限
chmod +x hadoop-0.20.2/test/code/reducer.py
細節:split(chara, m),第二個參數的做用,下面的例子很給力
str = 'server=mpilgrim&ip=10.10.10.10&port=8080' print str.split('=', 1)[0] #1表示=只截一次 print str.split('=', 1)[1] print str.split('=')[0] print str.split('=')[1]
輸出
server mpilgrim&ip=10.10.10.10&port=8080 server mpilgrim&ip
1.3 測試代碼(cat data | map | sort | reduce)
這裏建議你們在提交給MapReduce job以前在本地測試mapper.py 和reducer.py腳本。不然jobs可能會成功執行,可是結果並不是本身想要的。
功能性測試mapper.py 和 reducer.py
[rte@hadoop-0.20.2]$cd test/code [rte@code]$echo "foo foo quux labs foo bar quux" | ./mapper.py foo 1 foo 1 quux 1 labs 1 foo 1 bar 1 quux 1 [rte@code]$echo "foo foo quux labs foo bar quux" | ./mapper.py | sort -k1,1 | ./reducer.py bar 1 foo 3 labs 1 quux 2
細節:sort -k1,1 參數何意?
-k, -key=POS1[,POS2] 鍵以pos1開始,以pos2結束
有時候常常使用sort來排序,須要預處理把須要排序的field語言在最前面。實際上這是
徹底沒有必要的,利用-k參數就足夠了。
好比sort all
1 4 2 3 3 2 4 1 5 0
若是sort -k 2的話,那麼執行結果就是
5 0 4 1 3 2 2 3 1 4
2.1 數據準備
我把上面三個文件放到hadoop-0.20.2/test/datas/目錄下
2.2 運行
把本地的數據文件拷貝到分佈式文件系統HDFS中。
bin/hadoop dfs -copyFromLocal /test/datas hdfs_in
查看
bin/hadoop dfs -ls
結果
drwxr-xr-x - rte supergroup 0 2014-07-05 15:40 /user/rte/hdfs_in
查看具體的文件
bin/hadoop dfs -ls /user/rte/hdfs_in
執行MapReduce job
bin/hadoop jar contrib/streaming/hadoop-*streaming*.jar \ -file test/code/mapper.py -mapper test/code/mapper.py \ -file test/code/reducer.py -reducer test/code/reducer.py \ -input /user/rte/hdfs_in/* -output /user/rte/hdfs_out
實例輸出
查看輸出結果是否在目標目錄/user/rte/hdfs_out
bin/hadoop dfs -ls /user/rte/hdfs_out
輸出
Found 2 items drwxr-xr-x - rte supergroup 0 2014-07-05 20:51 /user/rte/hdfs_out2/_logs -rw-r--r-- 2 rte supergroup 880829 2014-07-05 20:51 /user/rte/hdfs_out2/part-00000
查看結果
bin/hadoop dfs -cat /user/rte/hdfs_out2/part-00000
輸出
以上已經達成目的了,可是能夠利用python迭代器和生成器優化
3.1 python中的迭代器和生成器
3.2 優化Mapper 和 Reducer代碼
mapper.py
#!/usr/bin/env python import sys def read_input(file): for line in file: yield line.split() def main(separator='\t'): data = read_input(sys.stdin) for words in data: for word in words: print "%s%s%d" % (word, separator, 1) if __name__ == "__main__": main()
reducer.py
#!/usr/bin/env python from operator import itemgetter from itertools import groupby import sys def read_mapper_output(file, separator = '\t'): for line in file: yield line.rstrip().split(separator, 1) def main(separator = '\t'): data = read_mapper_output(sys.stdin, separator = separator) for current_word, group in groupby(data, itemgetter(0)): try: total_count = sum(int(count) for current_word, count in group) print "%s%s%d" % (current_word, separator, total_count) except valueError: pass if __name__ == "__main__": main()
細節:groupby
from itertools import groupby from operator import itemgetter things = [('2009-09-02', 11), ('2009-09-02', 3), ('2009-09-03', 10), ('2009-09-03', 4), ('2009-09-03', 22), ('2009-09-06', 33)] sss = groupby(things, itemgetter(0)) for key, items in sss: print key for subitem in items: print subitem print '-' * 20
結果
>>> 2009-09-02 ('2009-09-02', 11) ('2009-09-02', 3) -------------------- 2009-09-03 ('2009-09-03', 10) ('2009-09-03', 4) ('2009-09-03', 22) -------------------- 2009-09-06 ('2009-09-06', 33) --------------------
注