目錄node
一個集羣系統管理離不開監控,一樣的Kubernetes也須要根據數據指標來採集相關數據,從而完成對集羣系統的監控情況進行監測。這些指標整體上分爲兩個組成:監控集羣自己和監控Pod對象,一般一個集羣的衡量性指標包括如下幾個部分:mysql
另外一個方面,對Pod資源對象的監控需求大概有如下三類:linux
在新一代的Kubernetes指標監控體系當中主要由核心指標流水線和監控指標流水線組成:git
核心指標流水線:是指由kubelet、、metrics-server以及由API server提供的api組成,它們能夠爲K8S系統提供核心指標,從而瞭解並操做集羣內部組件和程序。其中相關的指標包括CPU的累積使用率、內存實時使用率,Pod資源佔用率以及容器磁盤佔用率等等。其中核心指標的獲取原先是由heapster進行收集,可是在1.11版本以後已經被廢棄,從而由新一代的metrics-server所代替對核心指標的匯聚。核心指標的收集是必要的。以下圖:
github
監控指標流水線:用於從系統收集各類指標數據並提供給終端用戶、存儲系統以及HPA。它們包含核心指標以及許多非核心指標,其中因爲非核心指標自己不能被Kubernetes所解析,此時就須要依賴於用戶選擇第三方解決方案。以下圖:web
一個能夠同時使用資源指標API和自定義指標API的組件是HPAv2,其實現了經過觀察指標實現自動擴容和縮容。而目前資源指標API的實現主流是metrics-server。sql
自1.8版本後,容器的cpu和內存資源佔用利用率均可以經過客戶端指標API直接調用,從而獲取資源使用狀況,要知道的是API自己並不存儲任何指標數據,僅僅提供資源佔用率的實時監測數據。數據庫
資源指標和其餘的API指標並無啥區別,它是經過API Server的URL路徑/apis/metrics.k8s.io/進行存取,只有在k8s集羣內部署了metrics-server應用才能只用API,其簡單的結構圖以下:
MetricsServer基於內存存儲,重啓後數據將所有丟失,並且它僅能留存最近收集到的指標數據,所以,若是用戶指望訪問歷史數據,就不得不借助於第三方的監控系統(如Prometheus等)。vim
通常說來,MetricsServer在每一個集羣中僅會運行一個實例,啓動時,它將自動初始化與各節點的鏈接,所以出於安全方面的考慮,它須要運行於普通節點而非Master主機之上。直接使用項目自己提供的資源配置清單即能輕鬆完成metrics-server的部署。後端
https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/metrics-server
下載yaml文件
[root@master metrics-server]# for n in auth-delegator.yaml auth-reader.yaml metrics-apiservice.yaml metrics-server-deployment.yaml metrics-server-service.yaml resource-reader.yaml;do wget https://raw.githubusercontent.com/kubernetes/kubernetes/master/cluster/addons/metrics-server/$n;done [root@master metrics-server]# ll 總用量 24 -rw-r--r-- 1 root root 398 4月 10 10:31 auth-delegator.yaml -rw-r--r-- 1 root root 419 4月 10 10:31 auth-reader.yaml -rw-r--r-- 1 root root 393 4月 10 10:32 metrics-apiservice.yaml -rw-r--r-- 1 root root 3156 4月 10 10:32 metrics-server-deployment.yaml -rw-r--r-- 1 root root 336 4月 10 10:32 metrics-server-service.yaml -rw-r--r-- 1 root root 801 4月 10 10:32 resource-reader.yaml
部署
#因爲鏡像及部分設置問題,修改下面這個文件的部份內容 #metrics-server容器修改鏡像地址和command字段,metrics-server-nanny容器中的cpu和內存值 [root@master metrics-server]# vim metrics-server-deployment.yaml ...... spec: priorityClassName: system-cluster-critical serviceAccountName: metrics-server containers: - name: metrics-server #image: k8s.gcr.io/metrics-server-amd64:v0.3.1 image: xiaobai20201/metrics-server:v0.3.1 - name: metrics-server #image: k8s.gcr.io/metrics-server-amd64:v0.3.1 image: xiaobai20201/metrics-server:v0.3.1 command: - /metrics-server - --metric-resolution=30s - --kubelet-insecure-tls - --kubelet-preferred-address-types=InternalIP,Hostname,InternalDNS,ExternalDNS,ExternalIP ports: - containerPort: 443 name: https protocol: TCP - name: metrics-server-nanny #image: k8s.gcr.io/addon-resizer:1.8.4 image: xiaobai20201/addon-resizer:1.8.4 resources: limits: cpu: 100m memory: 300Mi requests: cpu: 5m # Specifies the smallest cluster (defined in number of nodes) # resources will be scaled to. memory: 50Mi env: - name: MY_POD_NAME valueFrom: fieldRef: fieldPath: metadata.name - name: MY_POD_NAMESPACE valueFrom: fieldRef: fieldPath: metadata.namespace volumeMounts: - name: metrics-server-config-volume mountPath: /etc/config command: - /pod_nanny - --config-dir=/etc/config - --cpu=100m - --extra-cpu=0.5m - --memory=100Mi - --extra-memory=50Mi - --threshold=5 - --deployment=metrics-server-v0.3.1 - --container=metrics-server - --poll-period=300000 - --estimator=exponential - --minClusterSize=10 [root@master metrics-server]# vim resource-reader.yaml #因爲啓動容器還須要權限獲取數據,須要在resource-reader.yaml文件中增長nodes/stats apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: system:metrics-server labels: kubernetes.io/cluster-service: "true" addonmanager.kubernetes.io/mode: Reconcile rules: - apiGroups: - "" resources: - pods - nodes - nodes/stats - namespaces verbs: - get - list - watch
部署
[root@master metrics-server]# kubectl apply -f . clusterrolebinding.rbac.authorization.k8s.io/metrics-server:system:auth-delegator created rolebinding.rbac.authorization.k8s.io/metrics-server-auth-reader created apiservice.apiregistration.k8s.io/v1beta1.metrics.k8s.io created serviceaccount/metrics-server created configmap/metrics-server-config created deployment.apps/metrics-server-v0.3.1 created service/metrics-server created clusterrole.rbac.authorization.k8s.io/system:metrics-server created clusterrolebinding.rbac.authorization.k8s.io/system:metrics-server created [root@master metrics-server]# kubectl api-versions |grep metrics metrics.k8s.io/v1beta1 #檢查資源指標API的可用性 [root@master metrics-server]# kubectl get --raw "/apis/metrics.k8s.io/v1beta1/nodes" {"kind":"NodeMetricsList","apiVersion":"metrics.k8s.io/v1beta1","metadata":{"selfLink":"/apis/metrics.k8s.io/v1beta1/nodes"},"items":[]}
#部署成功後可使用kubectl proxy --port=8080來代理出一個端口 [root@master metrics-server]# kubectl proxy --port=8080 Starting to serve on 127.0.0.1:8080 #使用curl命令能夠從api接口查看節點等狀態 [root@master mainfest]# curl http://localhost:8080/apis/metrics.k8s.io/v1beta1 { "kind": "APIResourceList", "apiVersion": "v1", "groupVersion": "metrics.k8s.io/v1beta1", "resources": [ { "name": "nodes", "singularName": "", "namespaced": false, "kind": "NodeMetrics", "verbs": [ "get", "list" ] }, { "name": "pods", "singularName": "", "namespaced": true, "kind": "PodMetrics", "verbs": [ "get", "list" ] } ] } #該組內主要提供nodes和pods的數據 [root@master mainfest]# curl http://localhost:8080/apis/metrics.k8s.io/v1beta1/nodes { "kind": "NodeMetricsList", "apiVersion": "metrics.k8s.io/v1beta1", "metadata": { "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes" }, "items": [ { "metadata": { "name": "node02", "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/node02", "creationTimestamp": "2019-04-10T02:57:21Z" }, "timestamp": "2019-04-10T02:57:14Z", "window": "30s", "usage": { "cpu": "41332743n", "memory": "702124Ki" } }, { "metadata": { "name": "master", "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/master", "creationTimestamp": "2019-04-10T02:57:21Z" }, "timestamp": "2019-04-10T02:57:15Z", "window": "30s", "usage": { "cpu": "156316878n", "memory": "1209616Ki" } }, { "metadata": { "name": "node01", "selfLink": "/apis/metrics.k8s.io/v1beta1/nodes/node01", "creationTimestamp": "2019-04-10T02:57:21Z" }, "timestamp": "2019-04-10T02:57:09Z", "window": "30s", "usage": { "cpu": "47843790n", "memory": "800144Ki" } } ] }
下面使用kubectl top命令進行查看資源信息:
[root@master metrics-server]# kubectl top nodes NAME CPU(cores) CPU% MEMORY(bytes) MEMORY% master 146m 7% 1187Mi 68% node01 45m 4% 782Mi 45% node02 36m 3% 683Mi 39% [root@master mainfest]# kubectl top pods -n kube-system NAME CPU(cores) MEMORY(bytes) canal-nbspn 21m 52Mi canal-pj6rx 13m 43Mi canal-rgsnp 12m 43Mi coredns-78d4cf999f-6cb69 2m 10Mi coredns-78d4cf999f-tflpn 2m 10Mi etcd-master 16m 121Mi kube-apiserver-master 31m 517Mi kube-controller-manager-master 39m 82Mi kube-flannel-ds-amd64-5zrk7 2m 14Mi kube-flannel-ds-amd64-pql5n 2m 12Mi kube-flannel-ds-amd64-ssd29 2m 14Mi kube-proxy-ch4vp 2m 15Mi kube-proxy-cz2rf 2m 23Mi kube-proxy-kdp7d 4m 21Mi kube-scheduler-master 10m 21Mi kubernetes-dashboard-6f9998798-klf4t 1m 15Mi metrics-server-v0.3.1-65bd5d59b9-xvmns 1m 20Mi [root@master metrics-server]# kubectl top pod -l k8s-app=kube-dns --containers=true -n kube-system POD NAME CPU(cores) MEMORY(bytes) coredns-78d4cf999f-6cb69 coredns 2m 10Mi coredns-78d4cf999f-tflpn coredns 2m 10Mi
除了前面的資源指標(如CPU、內存)之外,用戶或管理員須要瞭解更多的指標數據,好比Kubernetes指標、容器指標、節點資源指標以及應用程序指標等等。自定義指標API容許請求任意的指標,其指標API的實現要指定相應的後端監視系統。而Prometheus是第一個開發了相應適配器的監控系統。這個適用於Prometheus的Kubernetes Customm Metrics Adapter是屬於Github上的k8s-prometheus-adapter項目提供的。其原理圖以下:
prometheus自己就是一監控系統,也分爲server端和agent端,server端從被監控主機獲取數據,而agent端須要部署一個node_exporter,主要用於數據採集和暴露節點的數據,那麼 在獲取Pod級別或者是mysql等多種應用的數據,也是須要部署相關的exporter。咱們能夠經過PromQL的方式對數據進行查詢,可是因爲自己prometheus屬於第三方的 解決方案,原生的k8s系統並不能對Prometheus的自定義指標進行解析,就須要藉助於k8s-prometheus-adapter將這些指標數據查詢接口轉換爲標準的Kubernetes自定義指標。
Prometheus是一個開源的服務監控系統和時序數據庫,其提供了通用的數據模型和快捷數據採集、存儲和查詢接口。它的核心組件Prometheus服務器按期從靜態配置的監控目標或者基於服務發現自動配置的目標中進行拉取數據,新拉取到啊的 數據大於配置的內存緩存區時,數據就會持久化到存儲設備當中。Prometheus組件架構圖以下:
每一個被監控的主機均可以經過專用的exporter程序提供輸出監控數據的接口,並等待Prometheus服務器週期性的進行數據抓取。若是存在告警規則,則抓取到數據以後會根據規則進行計算,知足告警條件則會生成告警,併發送到Alertmanager完成告警的彙總和分發。當被監控的目標有主動推送數據的需求時,能夠以Pushgateway組件進行接收並臨時存儲數據,而後等待Prometheus服務器完成數據的採集。
任何被監控的目標都須要事先歸入到監控系統中才能進行時序數據採集、存儲、告警和展現,監控目標能夠經過配置信息以靜態形式指定,也可讓Prometheus經過服務發現的機制進行動態管理。下面是組件的一些解析:
Prometheus可以直接把KubernetesAPIServer做爲服務發現系統使用進而動態發現和監控集羣中的全部可被監控的對象。這裏須要特別說明的是,Pod資源須要添加下列註解信息才能被Prometheus系統自動發現並抓取其內建的指標數據。
另外,僅指望Prometheus爲後端生成自定義指標時僅部署Prometheus服務器便可,它甚至也不須要數據持久功能。但若要配置完整功能的監控系統,管理員還須要在每一個主機上部署node_exporter、按需部署其餘特有類型的exporter以及Alertmanager。
官方地址 :https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/prometheus
因爲官方的YAML部署方式須要使用到PVC,這裏使用馬哥提供的學習類型的部署,具體生產仍是須要根據官方的建議進行。
[root@master metrics]# git clone https://github.com/iKubernetes/k8s-prom.git 正克隆到 'k8s-prom'... remote: Enumerating objects: 49, done. remote: Total 49 (delta 0), reused 0 (delta 0), pack-reused 49 Unpacking objects: 100% (49/49), done.
建立名稱空間prom
[root@master metrics]# cd k8s-prom/ [root@master k8s-prom]# ls k8s-prometheus-adapter kube-state-metrics namespace.yaml node_exporter podinfo prometheus README.md [root@master k8s-prom]# kubectl apply -f namespace.yaml namespace/prom created
部署node_exporter
[root@master k8s-prom]# cd node_exporter/ [root@master node_exporter]# kubectl apply -f . daemonset.apps/prometheus-node-exporter created service/prometheus-node-exporter created [root@master node_exporter]# kubectl get ds -n prom NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE prometheus-node-exporter 3 3 3 3 3 <none> 100s [root@master node_exporter]# kubectl get pods -n prom NAME READY STATUS RESTARTS AGE prometheus-node-exporter-b2lk5 1/1 Running 0 104s prometheus-node-exporter-d4l6v 1/1 Running 0 104s prometheus-node-exporter-swngp 1/1 Running 0 104s
部署prometheus-server
[root@master node_exporter]# cd ../prometheus/ [root@master prometheus]# ll 總用量 24 -rw-r--r-- 1 root root 10132 4月 10 11:20 prometheus-cfg.yaml -rw-r--r-- 1 root root 1481 4月 10 11:20 prometheus-deploy.yaml -rw-r--r-- 1 root root 716 4月 10 11:20 prometheus-rbac.yaml -rw-r--r-- 1 root root 278 4月 10 11:20 prometheus-svc.yaml [root@master prometheus]# kubectl apply -f . configmap/prometheus-config created deployment.apps/prometheus-server created clusterrole.rbac.authorization.k8s.io/prometheus created serviceaccount/prometheus created clusterrolebinding.rbac.authorization.k8s.io/prometheus created service/prometheus created #因爲prometheus的yaml內內存limit爲2G,此時node節點虛擬機均不知足要求,致使會一直是pending狀態,此處進行修改, [root@master prometheus]# vim prometheus-deploy.yaml #resources: # limits: # memory: 2Gi [root@master prometheus]# kubectl apply -f prometheus-deploy.yaml deployment.apps/prometheus-server configured [root@master prometheus]# kubectl get pods -n prom -w NAME READY STATUS RESTARTS AGE prometheus-node-exporter-b2lk5 1/1 Running 0 9m30s prometheus-node-exporter-d4l6v 1/1 Running 0 9m30s prometheus-node-exporter-swngp 1/1 Running 0 9m30s prometheus-server-556b8896d6-ld7xj 1/1 Running 0 35s
部署後查看日誌
[root@master prometheus]# kubectl logs prometheus-server-556b8896d6-ld7xj -n prom level=info ts=2019-04-10T03:33:57.752158604Z caller=main.go:220 msg="Starting Prometheus" version="(version=2.2.1, branch=HEAD, revision=bc6058c81272a8d938c05e75607371284236aadc)" level=info ts=2019-04-10T03:33:57.752221598Z caller=main.go:221 build_context="(go=go1.10, user=root@149e5b3f0829, date=20180314-14:15:45)" level=info ts=2019-04-10T03:33:57.752240032Z caller=main.go:222 host_details="(Linux 3.10.0-862.el7.x86_64 #1 SMP Fri Apr 20 16:44:24 UTC 2018 x86_64 prometheus-server-556b8896d6-ld7xj (none))" level=info ts=2019-04-10T03:33:57.752255713Z caller=main.go:223 fd_limits="(soft=65536, hard=65536)" level=info ts=2019-04-10T03:33:57.755420653Z caller=main.go:504 msg="Starting TSDB ..." level=info ts=2019-04-10T03:33:57.7620657Z caller=web.go:382 component=web msg="Start listening for connections" address=0.0.0.0:9090 level=info ts=2019-04-10T03:33:57.7632425Z caller=main.go:514 msg="TSDB started" level=info ts=2019-04-10T03:33:57.764611774Z caller=main.go:588 msg="Loading configuration file" filename=/etc/prometheus/prometheus.yml level=info ts=2019-04-10T03:33:57.765669001Z caller=kubernetes.go:191 component="discovery manager scrape" discovery=k8s msg="Using pod service account via in-cluster config" level=info ts=2019-04-10T03:33:57.76626263Z caller=kubernetes.go:191 component="discovery manager scrape" discovery=k8s msg="Using pod service account via in-cluster config" level=info ts=2019-04-10T03:33:57.76668914Z caller=kubernetes.go:191 component="discovery manager scrape" discovery=k8s msg="Using pod service account via in-cluster config" level=info ts=2019-04-10T03:33:57.767331363Z caller=kubernetes.go:191 component="discovery manager scrape" discovery=k8s msg="Using pod service account via in-cluster config" level=info ts=2019-04-10T03:33:57.768433541Z caller=kubernetes.go:191 component="discovery manager scrape" discovery=k8s msg="Using pod service account via in-cluster config" level=info ts=2019-04-10T03:33:57.768948262Z caller=main.go:491 msg="Server is ready to receive web requests."
此時可使用NodeIP:30090 進行訪問,並能夠查看監控,內部已經內置了了一些監控指標
部署kube-state-metrics
[root@master prometheus]# cd ../kube-state-metrics/ #修改 kube-state-metrics-deploy.yaml內的image地址 image: xiaobai20201/kube-state-metrics-amd64:v1.3.1 [root@master kube-state-metrics]# kubectl apply -f . deployment.apps/kube-state-metrics created serviceaccount/kube-state-metrics created clusterrole.rbac.authorization.k8s.io/kube-state-metrics created clusterrolebinding.rbac.authorization.k8s.io/kube-state-metrics created service/kube-state-metrics created [root@master kube-state-metrics]# kubectl get pods -n prom NAME READY STATUS RESTARTS AGE kube-state-metrics-84c69bb8-87l7n 1/1 Running 0 19s prometheus-node-exporter-b2lk5 1/1 Running 0 21m prometheus-node-exporter-d4l6v 1/1 Running 0 21m prometheus-node-exporter-swngp 1/1 Running 0 21m prometheus-server-556b8896d6-ld7xj 1/1 Running 0 12m
製做證書
因爲默認狀況下K8S集羣都是基於https提供服務,而默認狀況k8s-prometheus-adapter是基於http服務,須要提供該K8S服務器CA簽署承認的證書,因此須要自制證書
[root@master kube-state-metrics]# cd /etc/kubernetes/pki/ [root@master pki]# (umask 077;openssl genrsa -out serving.key) Generating RSA private key, 2048 bit long modulus .........+++ ..+++ e is 65537 (0x10001) [root@master pki]# openssl x509 -req -in serving.csr -CA ./ca.crt -CAkey ./ca.key -CAcreateserial -out serving.crt -days 3650 Signature ok subject=/CN=serving Getting CA Private Key [root@master pki]# kubectl create secret generic cm-adapter-serving-certs --from-file=serving.crt=./serving.crt --from-file=serving.key -n prom secret/cm-adapter-serving-certs created [root@master pki]# kubectl get secret -n prom NAME TYPE DATA AGE cm-adapter-serving-certs Opaque 2 13s default-token-r88nt kubernetes.io/service-account-token 3 37m kube-state-metrics-token-4rrqw kubernetes.io/service-account-token 3 14m prometheus-token-jdm5f kubernetes.io/service-account-token 3 31m
部署k8s-prometheus-adapter
這裏自帶的custom-metrics-apiserver-deployment.yaml和custom-metrics-config-map.yaml有點問題,須要下載k8s-prometheus-adapter項目中的這2個文件
[root@master k8s-prometheus-adapter]# wget https://raw.githubusercontent.com/DirectXMan12/k8s-prometheus-adapter/master/deploy/manifests/custom-metrics-apiserver-deployment.yaml [root@master k8s-prometheus-adapter]# wget https://raw.githubusercontent.com/DirectXMan12/k8s-prometheus-adapter/master/deploy/manifests/custom-metrics-config-map.yaml #修改下載文件的內容的namespace爲prom
執行
[root@master k8s-prometheus-adapter]# kubectl apply -f . clusterrolebinding.rbac.authorization.k8s.io/custom-metrics:system:auth-delegator created rolebinding.rbac.authorization.k8s.io/custom-metrics-auth-reader created deployment.apps/custom-metrics-apiserver created clusterrolebinding.rbac.authorization.k8s.io/custom-metrics-resource-reader created serviceaccount/custom-metrics-apiserver created service/custom-metrics-apiserver created apiservice.apiregistration.k8s.io/v1beta1.custom.metrics.k8s.io created clusterrole.rbac.authorization.k8s.io/custom-metrics-server-resources created configmap/adapter-config created clusterrole.rbac.authorization.k8s.io/custom-metrics-resource-reader created clusterrolebinding.rbac.authorization.k8s.io/hpa-controller-custom-metrics created [root@master k8s-prometheus-adapter]# kubectl get pods -n prom NAME READY STATUS RESTARTS AGE custom-metrics-apiserver-c86bfc77-dtkcn 1/1 Running 0 58s kube-state-metrics-84c69bb8-87l7n 1/1 Running 0 140m prometheus-node-exporter-b2lk5 1/1 Running 0 161m prometheus-node-exporter-d4l6v 1/1 Running 0 161m prometheus-node-exporter-swngp 1/1 Running 0 161m prometheus-server-556b8896d6-ld7xj 1/1 Running 0 152m [root@master k8s-prometheus-adapter]# kubectl api-versions |grep custom custom.metrics.k8s.io/v1beta1
[root@master metrics]# vim grafana.yaml apiVersion: apps/v1 kind: Deployment metadata: name: monitoring-grafana namespace: prom #修更名稱空間 spec: replicas: 1 selector: matchLabels: task: monitoring k8s-app: grafana template: metadata: labels: task: monitoring k8s-app: grafana spec: containers: - name: grafana image: registry.cn-hangzhou.aliyuncs.com/google_containers/heapster-grafana-amd64:v5.0.4 ports: - containerPort: 3000 protocol: TCP volumeMounts: - mountPath: /etc/ssl/certs name: ca-certificates readOnly: true - mountPath: /var name: grafana-storage env: #這裏使用的是原先的heapster的grafana的配置文件,須要註釋掉這個環境變量 #- name: INFLUXDB_HOST # # value: monitoring-influxdb - name: GF_SERVER_HTTP_PORT value: "3000" - name: GF_AUTH_BASIC_ENABLED value: "false" - name: GF_AUTH_ANONYMOUS_ENABLED value: "true" - name: GF_AUTH_ANONYMOUS_ORG_ROLE value: Admin - name: GF_SERVER_ROOT_URL value: / volumes: - name: ca-certificates hostPath: path: /etc/ssl/certs - name: grafana-storage emptyDir: {} --- apiVersion: v1 kind: Service metadata: labels: kubernetes.io/cluster-service: 'true' kubernetes.io/name: monitoring-grafana name: monitoring-grafana namespace: prom spec: type: NodePort ports: - port: 80 targetPort: 3000 selector: k8s-app: grafana [root@master metrics]# kubectl apply -f grafana.yaml deployment.apps/monitoring-grafana created service/monitoring-grafana created [root@master metrics]# kubectl get pods -n prom NAME READY STATUS RESTARTS AGE custom-metrics-apiserver-c86bfc77-dtkcn 1/1 Running 0 8m56s kube-state-metrics-84c69bb8-87l7n 1/1 Running 0 148m monitoring-grafana-dcf785fd8-f7q4g 1/1 Running 0 2m4s prometheus-node-exporter-b2lk5 1/1 Running 0 169m prometheus-node-exporter-d4l6v 1/1 Running 0 169m prometheus-node-exporter-swngp 1/1 Running 0 169m prometheus-server-556b8896d6-ld7xj 1/1 Running 0 160m [root@master metrics]# kubectl get svc -n prom NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE custom-metrics-apiserver ClusterIP 10.107.119.218 <none> 443/TCP 9m16s kube-state-metrics ClusterIP 10.103.206.116 <none> 8080/TCP 149m monitoring-grafana NodePort 10.109.0.252 <none> 80:30215/TCP 2m23s prometheus NodePort 10.101.97.208 <none> 9090:30090/TCP 166m prometheus-node-exporter ClusterIP None <none> 9100/TCP 169m
monitoring-grafana暴露端口爲30215
使用瀏覽器訪問 http://10.0.0.10:30215
默認是沒有kubernetes的模板的,能夠到grafana.com中去下載相關的kubernetes模板。
https://grafana.com/dashboards
https://www.cnblogs.com/linuxk 馬永亮. Kubernetes進階實戰 (雲計算與虛擬化技術叢書) Kubernetes-handbook-jimmysong-20181218