大數據/數據挖掘/推薦系統/機器學習相關資源Share my personal resources 視頻大數據視頻以及講義http://pan.baidu.com/share/link?shareid=3860301827&uk=3978262348 浙大數據挖掘系列http://v.youku.com/v_show/id_XNTgzNDYzMjg=.html?f=2740765 用Python作科學計算http://www.tudou.com/listplay/fLDkg5e1pYM.html R語言視頻http://pan.baidu.com/s/1koSpZ Hadoop視頻http://pan.baidu.com/s/1b1xYd 42區 . 技術 . 創業 . 第二講http://v.youku.com/v_show/id_XMzAyMDYxODUy.html 加州理工學院公開課:機器學習與數據挖掘http://v.163.com/special/opencourse/learningfromdata.html 書籍各類書~各類ppt~更新中~http://pan.baidu.com/s/1EaLnZ 機器學習經典書籍小結http://www.cnblogs.com/snake-hand/archive/2013/06/10/3131145.html QQ羣機器學習&模式識別 246159753 數據挖掘機器學習 236347059 推薦系統 274750470 博客推薦系統周濤 http://blog.sciencenet.cn/home.php?mod=space&uid=3075 Greg Linden http://glinden.blogspot.com/ Marcel Caraciolo http://aimotion.blogspot.com/ ResysChina http://weibo.com/p/1005051686952981 推薦系統人人小站 http://zhan.renren.com/recommendersystem 阿穩 http://www.wentrue.net 梁斌 http://weibo.com/pennyliang 刁瑞 http://diaorui.net guwendong http://www.guwendong.com xlvector http://xlvector.net 懶惰啊我 http://www.cnblogs.com/flclain/ free mind http://blog.pluskid.org/ lovebingkuai http://lovebingkuai.diandian.com/ LeftNotEasy http://www.cnblogs.com/LeftNotEasy LSRS 2013 http://graphlab.org/lsrs2013/program/ Google小組 https://groups.google.com/forum/#!forum/resys 機器學習Journal of Machine Learning Research http://jmlr.org/ 信息檢索清華大學信息檢索組 http://www.thuir.cn 天然語言處理我愛天然語言處理 http://www.52nlp.cn/test Github推薦系統推薦系統開源軟件列表彙總和評點 http://in.sdo.com/?p=1707 Mrec(Python) https://github.com/mendeley/mrec Crab(Python) https://github.com/muricoca/crab Python-recsys(Python) https://github.com/ocelma/python-recsys CofiRank(C++) https://github.com/markusweimer/cofirank GraphLab(C++) https://github.com/graphlab-code/graphlab EasyRec(Java) https://github.com/hernad/easyrec Lenskit(Java) https://github.com/grouplens/lenskit Mahout(Java) https://github.com/apache/mahout Recommendable(Ruby) https://github.com/davidcelis/recommendable 文章機器學習
推薦系統
- Netflix 推薦系統:第一部分 http://blog.csdn.net/bornhe/article/details/8222450
- Netflix 推薦系統:第二部分 http://blog.csdn.net/bornhe/article/details/8222497
- 探索推薦引擎內部的祕密 http://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy1/index.html
- 推薦系統resys小組線下活動見聞2009-08-22 http://www.tuicool.com/articles/vUvQVn
- Recommendation Engines Seminar Paper, Thomas Hess, 2009: 推薦引擎的總結性文章http://www.slideshare.net/antiraum/recommender-engines-seminar-paper
- Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions, Adomavicius, G.; Tuzhilin, A., 2005 http://dl.acm.org/citation.cfm?id=1070751
- A Taxonomy of RecommenderAgents on the Internet, Montaner, M.; Lopez, B.; de la Rosa, J. L., 2003http://www.springerlink.com/index/KK844421T5466K35.pdf
- A Course in Machine Learning http://ciml.info/
- 基於mahout構建社會化推薦引擎 http://www.doc88.com/p-745821989892.html
- 個性化推薦技術漫談 http://blog.csdn.net/java060515/archive/2007/04/19/1570243.aspx
- Design of Recommender System http://www.slideshare.net/rashmi/design-of-recommender-systems
- How to build a recommender system http://www.slideshare.net/blueace/how-to-build-a-recommender-system-presentation
- 推薦系統架構小結 http://blog.csdn.net/idonot/article/details/7996733
- System Architectures for Personalization and Recommendation http://techblog.netflix.com/2013/03/system-architectures-for.html
- The Netflix Tech Blog http://techblog.netflix.com/
- 百分點推薦引擎——從需求到架構http://www.infoq.com/cn/articles/baifendian-recommendation-engine
- 推薦系統 在InfoQ上的內容 http://www.infoq.com/cn/recommend
- 推薦系統實時化的實踐和思考 http://www.infoq.com/cn/presentations/recommended-system-real-time-practice-thinking
- 質量保證的推薦實踐 http://www.infoq.com/cn/news/2013/10/testing-practice/
- 推薦系統的工程挑戰 http://www.infoq.com/cn/presentations/Recommend-system-engineering
- 社會化推薦在人人網的應用 http://www.infoq.com/cn/articles/zyy-social-recommendation-in-renren/
- 利用20%時間開發推薦引擎 http://www.infoq.com/cn/presentations/twenty-percent-time-to-develop-recommendation-engine
- 使用Hadoop和 Mahout實現推薦引擎 http://www.jdon.com/44747
- SVD 簡介 http://www.cnblogs.com/FengYan/archive/2012/05/06/2480664.html
- Netflix推薦系統:從評分預測到消費者法則 http://blog.csdn.net/lzt1983/article/details/7696578
- 《推薦系統實踐》的Reference
-
|
|