文章均爲本人技術筆記,轉載請註明出處
[1] https://segmentfault.com/u/yzwall
[2] blog.csdn.net/j_dark/html
在JDK1.6中,ConcurrentHashMap將數據分紅一段一段存儲,給每一段數據配一把鎖,當一個線程得到鎖互斥訪問一個段數據時,其餘段的數據也可被其餘線程訪問;每一個Segment擁有一把可重入鎖,所以ConcurrentHashMap的分段鎖數目即爲Segment數組長度。ConcurrentHashMap結構:每個segment都是一個HashEntry<K,V>[] table
, table中的每個元素本質上都是一個HashEntry的單向隊列(單向鏈表實現)。每個segment都是一個HashEntry<K,V>[] table
, table中的每個元素本質上都是一個HashEntry的單向隊列。java
當一個線程訪問Node/鍵值對數據時,必須得到與它對應的segment鎖,其餘線程能夠訪問其餘Segment中的數據(鎖分離);算法
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V> implements ConcurrentMap<K,V>, Serializable編程
悲觀鎖好比synchronized鎖,爲確保其餘線程不會干擾當前線程工做,所以掛起其餘須要鎖的線程,等待持有鎖的線程釋放;segmentfault
樂觀鎖老是假設沒有衝突發生去作操做,若是檢測到衝突就失敗重試,知道成功爲止;數組
CAS(Compare And Swap):CAS算法包含三個參數CAS(V, E, N),判斷預期值E和內存舊值是否相同(Compare),若是相等用新值N覆蓋舊值V(Swap),不然失敗;
當多個線程嘗試使用CAS同時更新同一個變量時,只有其中一個線程能更新變量的值,其餘線程失敗(失敗線程不會被阻塞,而是被告知「失敗」,能夠繼續嘗試);
CAS在硬件層面能夠被編譯爲機器指令執行,所以性能高於基於鎖佔有方式實現線程安全;安全
JDK 1.8取消類segments
字段,直接用table數組存儲鍵值對,JDK1.6中每一個bucket中鍵值對組織方式是單向鏈表,查找複雜度是O(n)
,JDK1.8中當鏈表長度超過TREEIFY_THRESHOLD
時,鏈表轉換爲紅黑樹,查詢複雜度能夠下降到O(log n),改進性能;數據結構
JDK1.8中,一個線程每次對一個桶(鏈表 or 紅黑樹)進行加鎖,其餘線程仍然能夠訪問其餘桶;多線程
ConcurrentHashMap底層數據結構與HashMap相同,仍然採用table數組+鏈表+紅黑樹結構;
一個線程進行put/remove操做時,對桶(鏈表 or 紅黑樹)加上synchronized獨佔鎖;
ConcurrentHashMap採用CAS算法保證線程安全;併發
transient volatile Node<K,V>[] table
:鍵值對桶數組
private transient volatile Node<K,V>[] nextTable
: rehash擴容時用到的新鍵值對數組
private transient volatile long baseCount
:<span id = "jump1"></span>記錄當前鍵值對總數,經過CAS更新,對全部線程可見
private transient volatile int sizeCtl
sizeCtl
表示鍵值對總數閾值,經過CAS更新, 對全部線程可見
當sizeCtl
< 0時,表示多個線程在等待擴容;
當sizeCtl
= 0時,默認值;
當sizeCtl
> 0時,表示擴容的閾值;
private transient volatile int cellBusy
:自旋鎖;
private transient volatile CounterCell[] counterCells
: counter cell表,長度總爲2的冪次;
static class Segment<K,V>
:在JDK1.8中,Segment類僅僅在序列化和反序列化時發揮做用;
// 視圖 private transient KeySetView<K,V> keySet private transient ValuesView<K,V> values private transient EntrySetView<K,V> entrySet
static class Node<K,V> implements Map.Entry<K,V> { final int hash; final K key; // 鍵值對的value和next均爲volatile類型 volatile V val; volatile Node<K,V> next; ... }
public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel) { if (!(loadFactor > 0.0f) || initialCapacity < 0 || concurrencyLevel <= 0) throw new IllegalArgumentException(); if (initialCapacity < concurrencyLevel) // Use at least as many bins initialCapacity = concurrencyLevel; // as estimated threads long size = (long)(1.0 + (long)initialCapacity / loadFactor); int cap = (size >= (long)MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : tableSizeFor((int)size); this.sizeCtl = cap; }
該構造器會根據輸入的initialCapacity
肯定一個 >= initialCapacity的最小2的次冪;
concurrentLevel
:在JDK1.8以前本質是ConcurrentHashMap分段鎖總數,表示同時更新ConcurrentHashMap且不產生鎖競爭的最大線程數;在JDK1.8中,僅在構造器中確保初始容量>=concurrentLevel,爲兼容舊版本而保留;
final V putVal(K key, V value, boolean onlyIfAbsent) { if (key == null || value == null) throw new NullPointerException(); int hash = spread(key.hashCode()); int binCount = 0; // 不斷CAS探測,若是其餘線程正在修改tab,CAS嘗試失敗,直到成功爲止 for (Node<K,V>[] tab = table;;) { Node<K,V> f; int n, i, fh; // 空表,對tab進行初始化 if (tab == null || (n = tab.length) == 0) tab = initTable(); /** * CAS探測空桶 * 計算key所在bucket表中數組索引: i = (n - 1) & hash) */ else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) { // CAS添加新鍵值對 if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null))) break; // no lock when adding to empty bin } // 檢測到tab[i]桶正在進行rehash, else if ((fh = f.hash) == MOVED) tab = helpTransfer(tab, f); else { V oldVal = null; // 對桶的首元素上鎖獨佔 synchronized (f) { if (tabAt(tab, i) == f) { // 桶中鍵值對組織形式是鏈表 if (fh >= 0) { binCount = 1; for (Node<K,V> e = f;; ++binCount) { K ek; if (e.hash == hash && ((ek = e.key) == key || (ek != null && key.equals(ek)))) { oldVal = e.val; // 查找到對應鍵值對,更新值 if (!onlyIfAbsent) e.val = value; break; } // 桶中沒有對應鍵值對,插入到鏈表尾部 Node<K,V> pred = e; if ((e = e.next) == null) { pred.next = new Node<K,V>(hash, key, value, null); break; } } } // 桶中鍵值對組織形式是紅黑樹 else if (f instanceof TreeBin) { Node<K,V> p; binCount = 2; if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key, value)) != null) { oldVal = p.val; if (!onlyIfAbsent) p.val = value; } } } } // 檢查桶中鍵值對總數 if (binCount != 0) { if (binCount >= TREEIFY_THRESHOLD) // 鏈表轉換爲紅黑樹 treeifyBin(tab, i); if (oldVal != null) return oldVal; break; } } } // 更新baseCount addCount(1L, binCount); return null; }
synchronized (f) {}
操做經過對桶的首元素 = 鏈表表頭 Or 紅黑樹根節點加鎖,從而實現對整個桶進行加鎖,有鎖分離思想的體現;
public V get(Object key) { Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek; int h = spread(key.hashCode()); if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) { if ((eh = e.hash) == h) { if ((ek = e.key) == key || (ek != null && key.equals(ek))) return e.val; } else if (eh < 0) return (p = e.find(h, key)) != null ? p.val : null; while ((e = e.next) != null) { if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }
get方法經過CAS保證鍵值對的原子性,當tab[i]被鎖住,CAS失敗並不斷重試,保證get不會出錯;
當baseCount超過sizeCtl,將table中全部bin內的鍵值對拷貝到nextTable;
待補充;
待補充;
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) { return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE); }
tabAt方法原子讀取table[i];調用Unsafe
對象的getObjectVolatile
方法獲取tab[i],因爲對volatile寫操做happen-before於volatile讀操做,所以其餘線程對table的修改均對get讀取可見;((long)i << ASHIFT) + ABASE)
計算i元素的地址
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i, Node<K,V> c, Node<K,V> v) { return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v); }
casTabAt經過compareAndSwapObject方法比較tabp[i]和v是否相等,相等就用c更新tab[i];
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) { U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v); }
僅在synchronized同步塊中被調用,更新鍵值對;
private final void addCount(long x, int check) { CounterCell[] as; long b, s; // s = b + x,完成baseCount++操做; if ((as = counterCells) != null || !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { CounterCell a; long v; int m; boolean uncontended = true; if (as == null || (m = as.length - 1) < 0 || (a = as[ThreadLocalRandom.getProbe() & m]) == null || !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { // 多線程CAS發生失敗時執行 fullAddCount(x, uncontended); return; } if (check <= 1) return; s = sumCount(); } if (check >= 0) { Node<K,V>[] tab, nt; int n, sc; // 當更新後的鍵值對總數baseCount >= 閾值sizeCtl時,進行rehash while (s >= (long)(sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { int rs = resizeStamp(n); // sc < 0 表示其餘線程已經在rehash if (sc < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; // 其餘線程的rehash操做已經完成,當前線程能夠進行rehash if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } // sc >= 0 表示只有當前線程在進行rehash操做,調用輔助擴容方法transfer else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); s = sumCount(); } } }
addCount負責對baseCount + 1操做,CounterCell是Striped64類型,不然應對高併發問題;
待補充;
[1] 《Java併發編程的藝術》
[2] http://www.cnblogs.com/leesf4...
[3] http://blog.csdn.net/u0108877...
[4] http://www.cnblogs.com/Mainz/...
[5] http://www.cnblogs.com/huaizu...
[6] http://www.cnblogs.com/everSe...