通道(Channel):用於源節點與目標節點的鏈接。在 Java NIO 中負責緩衝區中數據的傳輸。Channel 自己不存儲數據,所以須要配合緩衝區進行傳輸數組
|--FileChannel 本地io
|--SocketChannel TCP網絡io
|--ServerSocketChannel TCP網絡io
|--DatagramChannel UDP網絡io網絡
本地 IO:FileInputStream、FileOutputStream、 RandomAccessFileapp
網絡IO:Socket、ServerSocket、DatagramSocketdom
//利用通道完成文件的複製(非直接緩衝區) @Test public void test1(){ long start = System.currentTimeMillis(); FileInputStream fis = null; FileOutputStream fos = null; //①獲取通道 FileChannel inChannel = null; FileChannel outChannel = null; try { fis = new FileInputStream("/Users/tentsuuhou/Desktop/01.mp4"); fos = new FileOutputStream("/Users/tentsuuhou/Desktop/09.mp4"); inChannel = fis.getChannel(); outChannel = fos.getChannel(); //②分配指定大小的緩衝區 ByteBuffer buf = ByteBuffer.allocate(1024); //③將通道中的數據存入緩衝區中 while(inChannel.read(buf) != -1){ buf.flip(); //切換讀取數據的模式 //④將緩衝區中的數據寫入通道中 outChannel.write(buf); buf.clear(); //清空緩衝區 } } catch (IOException e) { e.printStackTrace(); } finally { if(outChannel != null){ try { outChannel.close(); } catch (IOException e) { e.printStackTrace(); } } if(inChannel != null){ try { inChannel.close(); } catch (IOException e) { e.printStackTrace(); } } if(fos != null){ try { fos.close(); } catch (IOException e) { e.printStackTrace(); } } if(fis != null){ try { fis.close(); } catch (IOException e) { e.printStackTrace(); } } } long end = System.currentTimeMillis(); System.out.println("耗費時間爲:" + (end - start)); }
我用的是mac系統,01.mp4視頻25M左右,第一次複製時間1024ms,而後覆蓋從新執行,大概左右在683ms,若是能夠,你們能夠試試1G以上的視頻,看看須要多久工具
//使用直接緩衝區完成文件的複製(內存映射文件) @Test public void test2(){ long start = System.currentTimeMillis(); FileChannel inChannel = null; FileChannel outChannel= null; try { inChannel = FileChannel.open(Paths.get("/Users/tentsuuhou/Desktop/01.mp4"), StandardOpenOption.READ); outChannel = FileChannel.open(Paths.get("/Users/tentsuuhou/Desktop/08.mp4"), StandardOpenOption.WRITE, StandardOpenOption.READ, StandardOpenOption.CREATE); //內存映射文件 MappedByteBuffer inMappedBuf = inChannel.map(MapMode.READ_ONLY, 0, inChannel.size()); MappedByteBuffer outMappedBuf = outChannel.map(MapMode.READ_WRITE, 0, inChannel.size()); //直接對緩衝區進行數據的讀寫操做 byte[] dst = new byte[inMappedBuf.limit()]; inMappedBuf.get(dst); outMappedBuf.put(dst); } catch (IOException e){ e.printStackTrace(); } finally { try { inChannel.close(); } catch (IOException e) { e.printStackTrace(); } try { outChannel.close(); } catch (IOException e) { e.printStackTrace(); } } long end = System.currentTimeMillis(); System.out.println("耗費時間爲:" + (end - start)); }
第一次:371ms,第二次104ms,證實直接緩衝區比間接緩衝區效率搞了不少。編碼
直接字節緩衝區還能夠經過FileChannel的map()方法將文件區域直接映射到內存中來建立。該方法返回 MappedByteBuffer 。Java 平臺的實現有助於經過 JNI 從本機代碼建立直接字節緩衝區。若是以上這些緩衝區 中的某個緩衝區實例指的是不可訪問的內存區域,則試圖訪問該區域不會更改該緩衝區的內容,而且將會在 訪問期間或稍後的某個時間致使拋出不肯定的異常。spa
@Test public void test7(){ long start = System.currentTimeMillis(); FileChannel in = null; FileChannel out = null; try { in = (FileChannel) Files.newByteChannel(Paths.get("/Users/tentsuuhou/Desktop/01.mp4"),StandardOpenOption.READ); out = (FileChannel) Files.newByteChannel(Paths.get("/Users/tentsuuhou/Desktop/07.mp4"),StandardOpenOption.READ,StandardOpenOption.WRITE,StandardOpenOption.CREATE); MappedByteBuffer inMap = in.map(MapMode.READ_ONLY,0,in.size()); MappedByteBuffer outMap = out.map(MapMode.READ_WRITE,0,in.size()); byte[] bytes = new byte[inMap.limit()]; //直接對緩衝區進行數據的讀寫操做 inMap.get(bytes); outMap.put(bytes); } catch (IOException i){ i.printStackTrace(); } finally { try { in.close(); } catch (IOException e) { e.printStackTrace(); } try { out.close(); } catch (IOException e) { e.printStackTrace(); } } long end = System.currentTimeMillis(); System.out.println(end-start); }
一樣使用的是直接緩衝區,速度和上面基本一致,只不過這個是用newByteChannel() 方法建立通道。code
4.1 transferFrom()視頻
4.2 transferTo()blog
//通道之間的數據傳輸(直接緩衝區) @Test public void test3(){ FileChannel inChannel = null; FileChannel outChannel = null; try { inChannel = FileChannel.open(Paths.get("/Users/tentsuuhou/Desktop/01.mp4"), StandardOpenOption.READ); outChannel = FileChannel.open(Paths.get("/Users/tentsuuhou/Desktop/06.mp4"), StandardOpenOption.WRITE, StandardOpenOption.READ, StandardOpenOption.CREATE); //使用下面transferTo 或者 transferFrom 均可以達到目的 //inChannel.transferTo(0, inChannel.size(), outChannel); outChannel.transferFrom(inChannel, 0, inChannel.size()); } catch (IOException e){ e.printStackTrace(); } finally { try { inChannel.close(); } catch (IOException e) { e.printStackTrace(); } try { outChannel.close(); } catch (IOException e) { e.printStackTrace(); } } }
5.1 分散讀取(Scattering Reads):將通道中的數據分散到多個緩衝區中
5.2 彙集寫入(Gathering Writes):將多個緩衝區中的數據彙集到通道中
//分散和彙集 @Test public void test4() throws IOException{ RandomAccessFile raf1 = new RandomAccessFile("1.txt", "rw"); //1. 獲取通道 FileChannel channel1 = raf1.getChannel(); //2. 分配指定大小的緩衝區 ByteBuffer buf1 = ByteBuffer.allocate(100); ByteBuffer buf2 = ByteBuffer.allocate(1024); //3. 分散讀取 ByteBuffer[] bufs = {buf1, buf2}; channel1.read(bufs); for (ByteBuffer byteBuffer : bufs) { byteBuffer.flip(); } System.out.println(new String(bufs[0].array(), 0, bufs[0].limit())); System.out.println("-----------------"); System.out.println(new String(bufs[1].array(), 0, bufs[1].limit())); //4. 彙集寫入 RandomAccessFile raf2 = new RandomAccessFile("2.txt", "rw"); FileChannel channel2 = raf2.getChannel(); channel2.write(bufs); }
沒有什麼效率的問題,只是記住有這麼一個功能就行了
6.1 編碼:字符串 -> 字節數組
6.2 解碼:字節數組 -> 字符串
//字符集 @Test public void test6() throws IOException{ Charset cs1 = Charset.forName("utf-8"); //獲取編碼器 CharsetEncoder ce = cs1.newEncoder(); //獲取解碼器 CharsetDecoder cd = cs1.newDecoder(); CharBuffer cBuf = CharBuffer.allocate(1024); cBuf.put("我愛開源中國,做者MuJiuTian!"); cBuf.flip(); //編碼 ByteBuffer bBuf = ce.encode(cBuf); for (int i = 0; i < 36; i++) { System.out.println(bBuf.get()); } //解碼 bBuf.flip(); CharBuffer cBuf2 = cd.decode(bBuf); System.out.println(cBuf2.toString()); System.out.println("------------------------------------------------------"); Charset cs2 = Charset.forName("utf-8"); bBuf.flip(); CharBuffer cBuf3 = cs2.decode(bBuf); System.out.println(cBuf3.toString()); }