燈的開關 Bulb Switcher II

問題:spa

There is a room with n lights which are turned on initially and 4 buttons on the wall. After performing exactly m unknown operations towards buttons, you need to return how many different kinds of status of the n lights could be.code

Suppose n lights are labeled as number [1, 2, 3 ..., n], function of these 4 buttons are given below:orm

  1. Flip all the lights.
  2. Flip lights with even numbers.
  3. Flip lights with odd numbers.
  4. Flip lights with (3k + 1) numbers, k = 0, 1, 2, ...

Example 1:three

Input: n = 1, m = 1.
Output: 2
Explanation: Status can be: [on], [off]

Example 2:ip

Input: n = 2, m = 1.
Output: 3
Explanation: Status can be: [on, off], [off, on], [off, off]

Example 3:數學

Input: n = 3, m = 1.
Output: 4
Explanation: Status can be: [off, on, off], [on, off, on], [off, off, off], [off, on, on].

Note: n and m both fit in range [0, 1000].it

解決:io

① 仍是找規律。function

咱們只須要考慮當 n<=2 and m < 3 的特殊情形。由於當 n >2 and m >=3, 結果確定是 8.form

四個按鈕的功能:

  • 翻轉全部的燈。
  • 翻轉偶數的燈。
  • 翻轉奇數的燈。
  • 翻轉(3k + 1)數字,k = 0,1,2,...

若是咱們使用按鈕1和2,則等同於使用按鈕3。

一樣的:

1 + 2 → 3,1 + 3 → 2,2 + 3 → 1
因此,只有8種結果:1,2,3,4,1 + 4,2 + 4,3 + 4,當n> 2和m> = 3時,咱們能夠獲得全部的狀況。

class Solution { //7ms
    public int flipLights(int n, int m) {
        if (m == 0) return 1;
        if (n == 1) return 2;
        if (n == 2 && m == 1) return 3;
        if (n == 2) return 4;
        if (m == 1) return 4;
        if (m == 2) return 7;
        if (m >= 3) return 8;
        return 8;
    }
}

② 

//O(1)數學問題,總共有8個state  1111,1010,0101,0111,0000,0011, 1100 and 1001.
//須要枚舉 n>3之後就只能是這8個state了
//n == 1 Only 2 possibilities: 1 and 0.
//n == 2 After one operation, it has only 3 possibilities: 00, 10 and 01. After two and more operations, it has only 4 possibilities: 11, 10, 01 and 00.
//n == 3 After one operation, it has only 4 possibilities: 000, 101, 010 and 011. After two operations, it has 7 possibilities: 111,101,010,100,000,001 and 110. After three and more operations, it has 8 possibilities, plus 011 on above case.
//n >= 4 After one operation, it has only 4 possibilities: 0000, 1010, 0101 and 0110.
//After two or more operations: it has 8 possibilities, 1111,1010,0101,0111,0000,0011, 1100 and 1001.
class Solution {//8ms
    public int flipLights(int n, int m) {
        n = Math.min(n, 3);
        if (m == 0) return 1;
        if (m == 1) return n == 1 ? 2 : n == 2 ? 3 : 4;
        if (m == 2) return n == 1 ? 2 : n == 2 ? 4 : 7;
        return n == 1 ? 2 : n == 2 ? 4 : 8;
    }
}
相關文章
相關標籤/搜索