你初始位於\((0,0)\),而後你想要到\((x,y)\)去,第\(i\)步的步長是\(2^{i-1}\),要求用最少的步數走到\((x,y)\)。node
首先能夠推出,走\(i\)步能夠走到一個正方形範圍內橫縱座標之和爲奇數的全部點。ios
如,走3步能夠走到全部紅色直線圍成的正方形內橫縱座標之和爲奇數的點。c++
這樣,咱們就能夠直接算出是否可達以及若可達最少步數是多少。app
而後考慮從最後一步開始從\((x,y)\)往\((0,0)\)走,枚舉4個方向,向這個方向走了這一步以後到達的點的最少步數也能夠算出來,若是最少步數減小那麼就表示可行,而後就完成這一步,繼續枚舉下一步的方向,直至走到\((0,0)\)。less
#include <bits/stdc++.h> using namespace std; // #include <ext/rope> // using namespace __gnu_cxx; // #include <ext/pb_ds/assoc_container.hpp> // #include <ext/pb_ds/tree_policy.hpp> // using namespace __gnu_pbds; // typedef ll key_type; // typedef null_mapped_type value_type; // typedef tree<key_type, value_type, less<key_type>, rb_tree_tag, tree_order_statistics_node_update> rbtree; // typedef __gnu_pbds::priority_queue<pi,greater<pi>,pairing_heap_tag > heap; // mt19937 rng(chrono::steady_clock::now().time_since_epoch().count()); // int rnd(int l,int r){return l+rng()%(r-l+1);} typedef long long ll; typedef double db; typedef pair<int,int> PII; typedef vector<int> VI; #define rep(i,_,__) for (int i=_; i<__; ++i) #define per(i,_,__) for (int i=_-1; i>=__; --i) #define eb emplace_back #define pb push_back #define mp make_pair #define fi first #define se second #define x1 _x #define x2 __x #define y1 _y #define y2 __y #define SZ(x) ((int)(x).size()) #define all(x) (x).begin(),(x).end() #define rall(x) (x).rbegin(),(x).rend() #define endl '\n' const double pi = acos(-1.0); namespace IO{ bool REOF = 1; //爲0表示文件結尾 inline char nc() { static char buf[1 << 20], *p1 = buf, *p2 = buf; return p1 == p2 && REOF && (p2 = (p1 = buf) + fread(buf, 1, 1 << 20, stdin), p1 == p2) ? (REOF = 0, EOF) : *p1++; } template<class T> inline bool read(T &x) { char c = nc();bool f = 0; x = 0; while (c<'0' || c>'9')c == '-' && (f = 1), c = nc(); while (c >= '0'&&c <= '9')x = (x << 3) + (x << 1) + (c ^ 48), c = nc(); if(f)x=-x; return REOF; } template<class T> inline void write(T x){ if(x > 9) write(x / 10); putchar('0'+x%10); } template<typename T, typename... T2> inline bool read(T &x, T2 &... rest) { read(x); return read(rest...); } inline bool need(char &c) { return ((c >= 'a') && (c <= 'z')) || ((c >= '0') && (c <= '9')) || ((c >= 'A') && (c <= 'Z')); } // inline bool need(char &c) { return ((c >= 'a') && (c <= 'z')) || ((c >= '0') && (c <= '9')) || ((c >= 'A') && (c <= 'Z')) || c==' '; } inline bool read_str(char *a) { while ((*a = nc()) && need(*a) && REOF)++a; *a = '\0'; return REOF; } inline bool read_db(double &x){ bool f = 0; char ch = nc(); x = 0; while(ch<'0'||ch>'9') {f|=(ch=='-');ch=nc();} while(ch>='0'&&ch<='9'){x=x*10.0+(ch^48);ch=nc();} if(ch == '.') { double tmp = 1; ch = nc(); while(ch>='0'&&ch<='9'){tmp=tmp/10.0;x=x+tmp*(ch^48);ch=nc();} } if(f)x=-x; return REOF; } template<class TH> inline void _dbg(const char *sdbg, TH h){ cerr<<sdbg<<'='<<h<<endl; } template<class TH, class... TA> inline void _dbg(const char *sdbg, TH h, TA... a) { while(*sdbg!=',')cerr<<*sdbg++; cerr<<'='<<h<<','<<' '; _dbg(sdbg+1, a...); } template<class T> ostream &operator<<(ostream& os, vector<T> V) { os << "[ "; for (auto vv : V) os << vv << ","; return os << " ]"; } template<class T> ostream &operator<<(ostream& os, set<T> V) { os << "[ "; for (auto vv : V) os << vv << ","; return os << " ]"; } template<class T> ostream &operator<<(ostream& os, map<T,T> V) { os << "[ "; for (auto vv : V) os << vv << ","; return os << " ]"; } template<class L, class R> ostream &operator<<(ostream &os, pair<L,R> P) { return os << "(" << P.x << "," << P.y << ")"; } #ifdef BACKLIGHT #define debug(...) _dbg(#__VA_ARGS__, __VA_ARGS__) #else #define debug(...) #endif } using namespace IO; const int N = 2e5 + 5; const int M = 5e5 + 5; const int MAXV = 1e6 + 5; const int MOD = 1e9 + 7; // 998244353 1e9+7 const int INF = 0x3f3f3f3f; // 1e9+7 0x3f3f3f3f const ll LLINF = 0x3f3f3f3f3f3f3f3f; // 1e18+9 0x3f3f3f3f3f3f3f3f const double eps = 1e-8; // int dx[4] = { 0, 1, 0, -1 }; // int dx[8] = { 1, 0, -1, 1, -1, 1, 0, -1 }; // int dy[4] = { 1, 0, -1, 0 }; // int dy[8] = { 1, 1, 1, 0, 0, -1, -1, -1 }; // ll qp(ll a, ll b) { // ll res = 1; // a %= mod; // assert(b >= 0); // while(b){ // if(b&1) // res = res * a % mod; // a = a * a % mod; // b >>= 1; // } // return res; // } // ll inv(ll x) {return qp(x, mod - 2);} // ll factor[N], finv[N]; // void init() { // factor[0]=1; // for(int i=1; i<N; i++) factor[i] = factor[i-1] * i % mod; // finv[N-1] = qp(factor[N-1], mod - 2); // for(int i=N-2; i>=0; i--) finv[i] = finv[i+1] * (i+1) % mod; // } // ll c(ll n, ll m) { // return factor[n] * finv[m] % mod * finv[n-m] % mod; // } // #define ls (x<<1) // #define rs (x<<1|1) // #define mid ((l+r)>>1) // #define lson ls,l,mid // #define rson rs,mid+1,r // #define fore(_, __) for(int _ = head[__]; _; _=e[_].nxt) // int head[N], tot = 1; // struct Edge { // int v, nxt; // Edge(){} // Edge(int _v, int _nxt):v(_v), nxt(_nxt) {} // }e[N << 1]; // void addedge(int u, int v) { // e[tot] = Edge(v, head[u]); head[u] = tot++; // e[tot] = Edge(u, head[v]); head[v] = tot++; // } /** * ********** Backlight ********** * 仔細讀題 * 注意邊界條件 * 記得註釋輸入流重定向 * 沒有思路就試試逆向思惟 * 我不打了,能不能把個人分還給我 */ int dis(ll x, ll y) { ll sum = abs(x) + abs(y); if(x==0 && y==0) return 0; if((x+y)%2==0) return INF; rep(i, 1, 33) { if(sum <= (1LL<<i)-1) return i; } return INF; } ll x, y; void solve(int Case) { read(x, y); if(dis(x,y)==INF) { printf("Case #%d: IMPOSSIBLE\n", Case); return; } string ans = ""; int d = dis(x, y); per(i, d, 0) { ll D = 1LL << i; if(dis(x-D, y)<=i) ans+='E', x-=D; else if(dis(x+D, y)<=i) ans+='W', x+=D; else if(dis(x, y-D)<=i) ans+='N', y-=D; else if(dis(x, y+D)<=i) ans+='S', y+=D; else assert(false); } reverse(all(ans)); printf("Case #%d: %s\n", Case, ans.c_str()); } int main() { #ifdef BACKLIGHT freopen("in.txt", "r", stdin); #endif // ios::sync_with_stdio(false); cin.tie(0); cout.tie(0); int _T; read(_T); for (int _ = 1; _ <= _T; _++) solve(_); // int _T=1; while(read(n)) solve(_T), _T++; // solve(1); return 0; }