memory orderhtml
源碼變成可執行程序,通常由預編譯,編譯,彙編,連接。源碼重排序通常分爲編譯期重排序和運行期重排序。node
編譯期重排序:編譯器在不改變單線程程序的語義的前提下,能夠從新安排語句的執行順序。在不改變程序的語義的前提下,儘量減小寄存器的讀取,存儲次數,充分複用寄存器的存儲值。ios
CPU亂序執行c++
名稱 | 語義 |
memory_order_relaxed | Relaxed語義 |
memory_order_consume | Release-Acquire語義 |
memory_order_acquire | Release-Acquire語義 |
memory_order_release | Release-Acquire語義 |
memory_order_acq_rel | Release-Acquire語義 |
memory_order_seq_cst | Sequential consistency語義 |
synchronizes-with、happens-before關係編程
synchronizes-with: 若是線程A存儲一個值,而線程B讀取該值,那麼線程A中的存儲和線程B的載入之間存在一種synchronizes-with關係併發
happens-before: 若是一個操做排在另一個操做以前,那麼該操做就該發生於另外一個操做以前app
Relaxed語義函數
最寬鬆的內存操做約定,不會保證修改會不會及時被其餘的線程看到,也不對亂序作任何要求性能
relaxed的原子類型操做不參與synchronizes-with關係。ui
不一樣變量的relaxed能夠被自由的重排,前提它們服從全部約束下的happens-before關係
#include <atomic> #include <thread> #include <assert.h> atomic<bool> x, y; atomic<int> z; void write_x_then_y() { x.store(true, memory_order_relaxed); y.store(true, memory_order_relaxed); } void read_y_then_x() { while (!y.load(memory_order_relaxed)); if (x.load(memory_order_relaxed)) ++z; }int main() { x = false; y = false; z = 0; thread a(write_x_then_y); thread b(read_y_then_x); a.join(); b.join(); assert(z.load() != 0); // z可能等於0 }
Release-Acquire語義Sequential consistency語義
release和acquire老是一塊兒使用
release用於寫操做,acquire用於讀操做
release以前的寫操做不容許亂序到release以後, acquire以前的讀操做不容許亂序到acquire以前
acquire的修改會及時被release看到
Sequential consistency語義
sequential consistency 至關於 release + acquire 以外,還加上了一個對該操做加上全局順序的要求
#include <atomic> #include <thread> #include <assert.h> atomic<bool> x, y; atomic<int> z; void write_x() { x.store(true, memory_order_seq_cst); } void write_y() { y.store(true, memory_order_seq_cst); } void read_x_then_y() { while (!x.load(memory_order_seq_cst)); if (y.load(memory_order_seq_cst)) ++z; } void read_y_then_x() { while(!y.load(memory_order_seq_cst)); if (x.load(memory_order_seq_cst)) ++z; } int main() { x = false; y = false; z = 0; thread a(write_x); thread b(write_y); thread c(read_x_then_y); thread d(read_y_then_x); a.join(); b.join(); c.join(); d.join(); assert(z.load() != 0); // z不可能等於0 }
store,load
atomic<bool> x, y; atomic<int> z; void write() { x.store(true, memory_order_relaxed); y.store(true, memory_order_release); // x的值比y先填充值 } void read() { while(!y.load(memory_order_acquire)); // y在等write值得填充 if (x.load(memory_order_relaxed)) { z++; } } int main() { x = false; y = false; z = 0; thread t1(write); thread t2(read); t1.join(); t2.join(); cout << "z: " << z << endl; }
exchage
compare_exchange_weak
bool compare_exchange_weak(T& expected, T val, memory_order sync = memory_order_seq_cst)
NOTE:
1. atomic變量的值與expected進行比較, 若是結果true, 用val更新atomic的值(like store); 若是結果爲false, 用atomic的值更新expected的值.
2. 這個函數能得到這個atomic變量的值,而且若是比較的結果是true的話就修改這個值. 整個操做是原子操做,在讀取或者修改這個值得瞬間,其餘的線程不會修改這個值.
3. memory_order 是否生效也是根據比較的結果,若是結果爲true,那麼生效,不然不生效
4. compare_exchage_weak容許僞失敗(fail spuriously),儘管expected值確實和atomic變量的值相等,仍然會返回false; 這須要使用while操做
#include <iostream> #include <atomic> #include <thread> #include <vector> using namespace std; struct Node { int value; Node *next; }; atomic<Node*> list_head(nullptr); void Append(int val) { Node *p_old_node = list_head; Node *p_new_node = new Node {val, p_old_node}; while (!list_head.compare_exchange_weak(p_old_node, p_new_node)) { p_new_node->next = p_old_node; } } int main() { vector<thread> threads; for (int i = 0; i < 10; i++) { threads.push_back(thread(Append, i)); } for (auto &i : threads) { i.join(); } for (Node *it = list_head; it != nullptr; it = it->next) { cout << it->value << " "; } cout << endl; }
compare_exchange_strong
bool compare_exchange_strong (T& expected, T val, memory_order sync = memory_order_seq_cst)
1. compare_exchange_strong的用法和compare_exchange_weak基本用法都同樣
2. compare_exchange_strong不容許僞失敗(fail spuriously)
3. compare_exchange_weak的循環結構在某些機器上可能有更好的性能
atomic<int> ai; int tst_val = 4; int new_val = 5; bool exchanged = false; void valsout() { cout << "ai: " << ai << " tst_val: " << tst_val << " new_val: " << new_val << " exchanged: " << boolalpha << exchanged << endl; } int main() { ai = 3; valsout(); //ai = 3, tst_val = 4, new_val = 5, exchanged = false; exchanged = ai.compare_exchange_strong(tst_val, new_val); valsout(); //ai = 3, tst_val = 3, new_val = 5, exchanged = false; exchanged = ai.compare_exchange_strong(tst_val, new_val); valsout(); //ai = 3, tst_val = 3, new_val = 5, exchanged = false; }
參考資料:
[1] http://www.cplusplus.com/reference/atomic/atomic/
[2] <<c++併發編程>>
[3] http://www.cnblogs.com/haippy/p/3252056.html
[4] http://www.cnblogs.com/muhe221/articles/5049474.html