在前面的python數字圖像處理(10):圖像簡單濾波 中,咱們已經講解了不少算子用來檢測邊緣,其中用得最多的canny算子邊緣檢測。html
本篇咱們講解一些其它方法來檢測輪廓。python
一、查找輪廓(find_contours)算法
measure模塊中的find_contours()函數,可用來檢測二值圖像的邊緣輪廓。數組
函數原型爲:app
skimage.measure.find_contours(array, level)ide
array: 一個二值數組圖像函數
level: 在圖像中查找輪廓的級別值post
返回輪廓列表集合,可用for循環取出每一條輪廓。測試
例1:url
import numpy as np import matplotlib.pyplot as plt from skimage import measure,draw #生成二值測試圖像 img=np.zeros([100,100]) img[20:40,60:80]=1 #矩形 rr,cc=draw.circle(60,60,10) #小圓 rr1,cc1=draw.circle(20,30,15) #大圓 img[rr,cc]=1 img[rr1,cc1]=1 #檢測全部圖形的輪廓 contours = measure.find_contours(img, 0.5) #繪製輪廓 fig, (ax0,ax1) = plt.subplots(1,2,figsize=(8,8)) ax0.imshow(img,plt.cm.gray) ax1.imshow(img,plt.cm.gray) for n, contour in enumerate(contours): ax1.plot(contour[:, 1], contour[:, 0], linewidth=2) ax1.axis('image') ax1.set_xticks([]) ax1.set_yticks([]) plt.show()
結果以下:不一樣的輪廓用不一樣的顏色顯示
例2:
import matplotlib.pyplot as plt from skimage import measure,data,color #生成二值測試圖像 img=color.rgb2gray(data.horse()) #檢測全部圖形的輪廓 contours = measure.find_contours(img, 0.5) #繪製輪廓 fig, axes = plt.subplots(1,2,figsize=(8,8)) ax0, ax1= axes.ravel() ax0.imshow(img,plt.cm.gray) ax0.set_title('original image') rows,cols=img.shape ax1.axis([0,rows,cols,0]) for n, contour in enumerate(contours): ax1.plot(contour[:, 1], contour[:, 0], linewidth=2) ax1.axis('image') ax1.set_title('contours') plt.show()
二、逼近多邊形曲線
逼近多邊形曲線有兩個函數:subdivide_polygon()和 approximate_polygon()
subdivide_polygon()採用B樣條(B-Splines)來細分多邊形的曲線,該曲線一般在凸包線的內部。
函數格式爲:
skimage.measure.subdivide_polygon(coords, degree=2, preserve_ends=False)
coords: 座標點序列。
degree: B樣條的度數,默認爲2
preserve_ends: 若是曲線爲非閉合曲線,是否保存開始和結束點座標,默認爲false
返回細分爲的座標點序列。
approximate_polygon()是基於Douglas-Peucker算法的一種近似曲線模擬。它根據指定的容忍值來近似一條多邊形曲線鏈,該曲線也在凸包線的內部。
函數格式爲:
skimage.measure.approximate_polygon(coords, tolerance)
coords: 座標點序列
tolerance: 容忍值
返回近似的多邊形曲線座標序列。
例:
import numpy as np import matplotlib.pyplot as plt from skimage import measure,data,color #生成二值測試圖像 hand = np.array([[1.64516129, 1.16145833], [1.64516129, 1.59375], [1.35080645, 1.921875], [1.375, 2.18229167], [1.68548387, 1.9375], [1.60887097, 2.55208333], [1.68548387, 2.69791667], [1.76209677, 2.56770833], [1.83064516, 1.97395833], [1.89516129, 2.75], [1.9516129, 2.84895833], [2.01209677, 2.76041667], [1.99193548, 1.99479167], [2.11290323, 2.63020833], [2.2016129, 2.734375], [2.25403226, 2.60416667], [2.14919355, 1.953125], [2.30645161, 2.36979167], [2.39112903, 2.36979167], [2.41532258, 2.1875], [2.1733871, 1.703125], [2.07782258, 1.16666667]]) #檢測全部圖形的輪廓 new_hand = hand.copy() for _ in range(5): new_hand =measure.subdivide_polygon(new_hand, degree=2) # approximate subdivided polygon with Douglas-Peucker algorithm appr_hand =measure.approximate_polygon(new_hand, tolerance=0.02) print("Number of coordinates:", len(hand), len(new_hand), len(appr_hand)) fig, axes= plt.subplots(2,2, figsize=(9, 8)) ax0,ax1,ax2,ax3=axes.ravel() ax0.plot(hand[:, 0], hand[:, 1],'r') ax0.set_title('original hand') ax1.plot(new_hand[:, 0], new_hand[:, 1],'g') ax1.set_title('subdivide_polygon') ax2.plot(appr_hand[:, 0], appr_hand[:, 1],'b') ax2.set_title('approximate_polygon') ax3.plot(hand[:, 0], hand[:, 1],'r') ax3.plot(new_hand[:, 0], new_hand[:, 1],'g') ax3.plot(appr_hand[:, 0], appr_hand[:, 1],'b') ax3.set_title('all')