雲棲號資訊:【點擊查看更多行業資訊】
在這裏您能夠找到不一樣行業的第一手的上雲資訊,還在等什麼,快來!
網絡
仿生體感-視覺關聯學習框架。
架構
可伸縮應變傳感器。
框架
techxplore.com網站7月14日報道,新加坡南洋理工大學和悉尼科技大學的研究人員最近在《天然·電子學》雜誌發文公佈了一種機器學習架構,可經過分析可伸縮應變傳感器捕捉到的圖像識別人類手勢。機器學習
項目研究人員Xiaodong Chen在接受TechXplore採訪時說:「人腦如何處理信息?咱們對此很感興趣。在人腦中,思惟、規劃和靈感等高級感知活動,不只依賴特定的感官信息,還與不一樣傳感器的多感官信息綜合整合有關。這爲咱們結合視覺信息和軀體感受信息,實現高精度手勢識別提供了啓示。」學習
人類在解決實際任務時,一般會整合從周圍環境收集到的視覺和體感信息。兩種類型的信息是互補的,當它們結合在一塊兒時,可以爲解決問題提供更好的方案。所以,在開發人類手勢識別技術時,Chen等須要確保該技術可以整合多個傳感器收集到的不一樣類型的感知信息。Chen解釋:「爲了實現目標,咱們對傳感器進行了改進。與目前使用的可穿戴傳感器相比,新設計的可伸縮、高適應性傳感器能夠更準確地收集肢體感受數據。咱們還開發了一種仿生體感-視覺(BSV)學習框架,它能夠合理地融合視覺信息與體感信息。」網站
Chen等開發的BSV學習框架以多種方式複製了人類大腦的體感-視覺信息融合途徑,表現出三大特色:首先,它的多層、層級結構以人工神經網絡模仿大腦。其次,系統中的部分分段網絡處理模式與大腦中的神經網絡處理模態大體相同。最後,BSV架構具有新開發的稀疏神經網絡融合特徵。url
在初步評估實驗中,Chen等設計的BSV學習架構的表現優於單式識別方法(只處理視覺或體感數據的方法)。值得注意的是,它能比此前開發的三種多模態識別技術(加權平均融合SV-V,加權強調融合SV-T和加權倍增融合SV-M)更準確地識別人類手勢。.net
Chen說:「與單式識別和常見多模態識別相比,咱們開發的仿生學習架構具備更高的識別精度。而在圖像有噪聲、曝光不足或曝光過分等非理想條件下,它的識別精度也相對更高。」設計
BSV學習架構可用於製造醫療機器人,或者開發更先進的虛擬現實、加強現實和娛樂技術。Chen說:「BSV獨特的仿生特性使其優於多數現有技術。這已經被實驗結果證明。下一步,咱們將嘗試構建基於仿生融合的虛擬現實和加強現實系統。」htm
【雲棲號在線課堂】天天都有產品技術專家分享!
課程地址:https://yqh.aliyun.com/live當即加入社羣,與專家面對面,及時瞭解課程最新動態!
【雲棲號在線課堂 社羣】https://c.tb.cn/F3.Z8gvnK