quiver([X, Y], U, V, [C], **kw),其中kw可供選擇的參數有:算法
units:默認值是width, width/heigth:箭頭的寬度是x或者y軸的總長,沒錯,是總長; dots/inches:箭頭的寬度是設置的dpi或者設置的英寸大小,這個影響了width參數,好比說畫布大小設爲plt.figure(figsize=(144, 72), dpi=10),這個畫布佔1440*720px,若是quiver設置units="dots",width=5,表明以10像素爲基礎單位,5倍的寬度也就是畫一個箭頭它的寬度佔50px,那麼數據就須要抽樣畫了,否則會糊在一塊兒;
json
x/y/xy:以x,y,或者xy的平方根爲基礎的寬度,若是x軸或者y軸座標設置步長爲1,和畫布像素大小一致,這樣一個像素對應一個x的整數座標值,那麼就能夠控制箭頭杆的寬度了,箭頭杆的基礎長度就是根號2px;
ui
width:float型,用來控制箭頭杆的寬度,我只清楚units=dots時寬度的理解,可是對於units=x/y/xy時寬度到底指的是我暫時是按照上面的理解;
spa
angle:uv/xy,uv箭頭的縱橫比(axis aspect ratio)爲1,因此若U==V,則繪圖上箭頭的方向與水平軸逆時針呈45度(正向右);xy箭頭從(x,y)指向(x + u,y + v),例如,使用它來繪製漸變場(gradient field)
code
headwidth:float型,默認3,用來控制箭頭三角形底邊的半寬,值指的是杆寬的倍數;
blog
headlength: float型,默認5,用來控制箭頭斜邊的長度,值指的是杆寬的倍數,好比4.5指的是杆寬的4.5倍;
ip
scale:float型,默認爲None,用來控制桿身的長度,值越小,杆身越長,若是爲None,則使用matplotlib自動縮放算法,箭頭長度單scale_units參數指定
utf-8
scale_units:若是該值設置爲width/heigth,則scale應該設爲0.000x的範圍差很少纔是想要的結果,若是設置爲inches,則和你的dpi以及scale相關,對於plt.figure(figsize=(144, 72),dpi=10) scale=1,scale_units="inches"和scale=0.1,scale_units="x/xy/不寫"的畫出來的結果是同樣的;
it
pivot:tail/mid/middle/tip,默認tail,指的是箭頭中心,其實就是從哪裏畫
io
# _*_coding:utf-8_*_ import matplotlib.pyplot as plt from PIL import Image import numpy as np import os import sys import json import h5py FILLVALUE = -32767 def assigncolor(tardataset, mask, colorbar): if tardataset[mask].size > 0: if len(colorbar) >= 4: tardataset[mask] = colorbar else: tardataset[mask] = [colorbar[0], colorbar[1], colorbar[2], 255] return tardataset[mask] def single_drawer(dataset, colorbar, tardataset): #特殊值的處理 nullmask = np.isnan(dataset[:]) | np.isinf(dataset) tardataset[nullmask] = [255, 255, 255, 0] for index in range(0, len(colorbar)): # 獲取須要進行判斷的值 valuemask = tardataset[:, :] == [-1, -1, -1, -1] # 三維轉二維,方便與dataset的mask合併 valuemask = valuemask[:, :, 0] mask = dataset == colorbar[index][0] tardataset[valuemask & mask] = assigncolor(tardataset, valuemask & mask, colorbar[index][1]) return tardataset def gradient_drawer(dataset, colorbar, tardataset): # 特殊值的處理 nullmask = np.isnan(dataset[:]) | np.isinf(dataset) tardataset[nullmask] = [255, 255, 255, 0] # 小於最小值 valuemask = tardataset[:, :] == [-1, -1, -1, -1] valuemask = valuemask[:, :, 0] mask = dataset <= colorbar[0][0] tardataset[valuemask & mask] = assigncolor(tardataset, valuemask & mask, colorbar[0][1]) for index in range(0, len(colorbar) - 1): # 獲取須要進行判斷的值 valuemask = tardataset[:, :] == [-1, -1, -1, -1] if index == 18: print(valuemask.shape) valuemask = valuemask[:, :, 0] mask = (dataset > colorbar[index][0]) & (dataset <= colorbar[index + 1][0]) tempmask = valuemask & mask if tempmask[tempmask == True].size > 0: ratio = (1.0 * (dataset[valuemask & mask] - colorbar[index][0]) / (colorbar[index + 1][0] - colorbar[index][0])).reshape(-1, 1) colorrange = (np.array(colorbar[index + 1][1] - np.array(colorbar[index][1]))).reshape(1, -1) temp = np.dot(ratio, colorrange) + np.array(colorbar[index][1]) if len(colorbar[index][1]) < 4: alphaband = np.ones((temp.shape[0], 1)) alphaband[::] = 255 temp = np.column_stack((temp, alphaband)) tardataset[valuemask & mask] = temp # 大於最大值 valuemask = tardataset[:, :] == [-1, -1, -1, -1] valuemask = valuemask[:, :, 0] mask = dataset > colorbar[-1][0] tardataset[valuemask & mask] = assigncolor(tardataset, valuemask & mask, colorbar[-1][1]) return tardataset def drawWindDir(in_file, u_ds, v_ds, dir_file, cb_file): # 讀取調色板 gradient_cb = [] single_cb = [] with open(cb_file, "r") as cb_json: cb_data = json.load(cb_json) gradient_cb = cb_data["gradient"] single_cb = cb_data["single"] # 讀取風速 h5py_obj = h5py.File(in_file, 'r') u_data = np.array(h5py_obj[u_ds]) v_data = np.array(h5py_obj[v_ds]) sws_data = np.array(h5py_obj["SWS"]) # 獲取寬高 uh, uw = np.shape(u_data) vh, vw = np.shape(v_data) # 上下翻轉數據 u = np.flip(u_data, 0) v = np.flip(v_data, 0) # 讀取風速有效值範圍 sws_valid = h5py_obj["SWS"].attrs['valid range'] # 用風速有效值控制無效值區域提取 valid_mask = (sws_data >= sws_valid[0]) & (sws_data <= sws_valid[1]) # 用u,v向量計算風速 wp = np.empty((uh, uw), dtype=np.float) wp[:, :] = FILLVALUE wp[valid_mask] = np.sqrt(np.power(u[valid_mask] / 100.0, 2) + np.power(v[valid_mask] / 100.0, 2)) # 初始化輸出數據集 tardataset = np.ones((uh, uw, 4), dtype=np.int) tardataset[::] = -1 # 去掉single調色板的值 tardataset = single_drawer(sws_data, single_cb, tardataset) # 根據gradient調色板從新賦值 result_data = gradient_drawer(sws_data, gradient_cb, tardataset) # 輸出風速的底圖 new_image = Image.fromarray(result_data.astype(np.uint8)).convert('RGBA') new_image.save(in_file.replace(".HDF", ".png"), 'png') # 風向的xy座標,uv向量,1440,720,去除無效值 u_valid = valid_mask X, Y = np.meshgrid(np.arange(0, uw, 1), np.flipud(np.arange(0, uh, 1))) U = u.astype(np.int64) V = v.astype(np.int64) newU = np.zeros((uh, uw)) newV = np.zeros((uh, uw)) newU[u_valid] = U[u_valid] / np.sqrt(np.power(U[u_valid], 2) + np.power(V[u_valid], 2)) newV[u_valid] = V[u_valid] / np.sqrt(np.power(U[u_valid], 2) + np.power(V[u_valid], 2)) # 無效值爲nan newU[newU == 0] = np.nan newV[newV == 0] = np.nan # 建立畫布 fig1 = plt.figure(figsize=(uw, uh), dpi=1) ax1 = fig1.add_subplot(111) # 去掉座標軸,去掉兩邊空白,控制輸出的xy軸範圍 plt.axis('off') plt.subplots_adjust(top=1, bottom=0, left=0, right=1, hspace=0, wspace=0) plt.ylim(0, uh) plt.xlim(0, uw) # 柵格抽樣 i = 10 Q = ax1.quiver(X[::i, ::i], Y[::i, ::i], newU[::i, ::i], newV[::i, ::i], scale=0.1, width=1, units="xy", angles='uv', headwidth=3.5, headlength=4, pivot="mid") ax1.scatter(X[::i, ::i], Y[::i, ::i], color='r', s=30) plt.show() fig1.savefig(dir_file, transparent=True) plt.close() def mergeDirSpd(spd_img, dir_img, out_img): backimage = Image.open(spd_img) frontimage = Image.open(dir_img) # 暫時沒有考慮分辨率不一致狀況 outimage = Image.alpha_composite(backimage, frontimage) outimage.save(out_img) if __name__ == "__main__": in_path = sys.argv[1] ds = sys.argv[2] cb_file = sys.argv[3] if os.path.isdir(in_path): for w_root, w_dirs, dir_files in os.walk(in_path): for one_file in dir_files: if '.HDF' in one_file and "SWS" in one_file: in_file = os.path.join(w_root, one_file) spd_img = in_file.replace(".HDF", ".png") dir_img = in_file.replace(".HDF", "_dir.png") out_img = in_file.replace(".HDF", "_dp.png") u_ds = "wind_vel_u" v_ds = "wind_vel_v" drawWindDir(in_file, u_ds, v_ds, dir_img, cb_file) mergeDirSpd(spd_img, dir_img, out_img) elif os.path.isfile(in_path): in_file = in_path spd_img = in_file.replace(".HDF", ".png") dir_img = in_file.replace(".HDF", "_dir.png") out_img = in_file.replace(".HDF", "_dp.png") u_ds = "dwind_vel_u" v_ds = "wind_vel_v" drawWindDir(in_file, u_ds, v_ds, dir_img, cb_file) mergeDirSpd(spd_img, dir_img, out_img)