http://cxy.liuzhihengseo.com/462.htmljavascript
原文出處: 磁針石 css
本文摘要自Web Scraping with Python – 2015html
書籍下載地址:https://bitbucket.org/xurongzhong/python-chinese-library/downloadsjava
源碼地址:https://bitbucket.org/wswp/codepython
演示站點:http://example.webscraping.com/程序員
演示站點代碼:http://bitbucket.org/wswp/placesweb
推薦的python基礎教程: http://www.diveintopython.net正則表達式
HTML和JavaScript基礎:數據庫
http://www.w3schools.comexpress
web抓取簡介
爲何要進行web抓取?
網購的時候想比較下各個網站的價格,也就是實現惠惠購物助手的功能。有API天然方便,可是一般是沒有API,此時就須要web抓取。
web抓取是否合法?
抓取的數據,我的使用不違法,商業用途或從新發布則須要考慮受權,另外須要注意禮節。根據國外已經判決的案例,通常來講位置和電話能夠從新發布,可是原創數據不容許從新發布。
更多參考:
http://www.bvhd.dk/uploads/tx_mocarticles/S_-_og_Handelsrettens_afg_relse_i_Ofir-sagen.pdf
http://www.austlii.edu.au/au/cases/cth/FCA/2010/44.html
http://caselaw.findlaw.com/us-supreme-court/499/340.html
背景研究
robots.txt和Sitemap能夠幫助瞭解站點的規模和結構,還可使用谷歌搜索和WHOIS等工具。
好比:http://example.webscraping.com/robots.txt
1 2 3 4 5 6 7 8 9 10 11 |
# section 1 User-agent: BadCrawler Disallow: /
# section 2 User-agent: * Crawl-delay: 5 Disallow: /trap
# section 3 Sitemap: http://example.webscraping.com/sitemap.xml |
更多關於web機器人的介紹參見 http://www.robotstxt.org。
Sitemap的協議: http://www.sitemaps.org/protocol.html,好比:
1 2 3 4 |
http://example.webscraping.com/view/Afghanistan-1 http://example.webscraping.com/view/Aland-Islands-2 http://example.webscraping.com/view/Albania-3 ... |
站點地圖常常不完整。
站點大小評估:
經過google的site查詢 好比:site:automationtesting.sinaapp.com
站點技術評估:
1 2 3 4 5 6 7 8 9 10 |
# pip install builtwith # ipython In [1]: import builtwith
In [2]: builtwith.parse('http://automationtesting.sinaapp.com/') Out[2]: {u'issue-trackers': [u'Trac'], u'javascript-frameworks': [u'jQuery'], u'programming-languages': [u'Python'], u'web-servers': [u'Nginx']} |
分析網站全部者:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
# pip install python-whois # ipython In [1]: import whois
In [2]: print whois.whois('http://automationtesting.sinaapp.com') { "updated_date": "2016-01-07 00:00:00", "status": [ "serverDeleteProhibited https://www.icann.org/epp#serverDeleteProhibited", "serverTransferProhibited https://www.icann.org/epp#serverTransferProhibited", "serverUpdateProhibited https://www.icann.org/epp#serverUpdateProhibited" ], "name": null, "dnssec": null, "city": null, "expiration_date": "2021-06-29 00:00:00", "zipcode": null, "domain_name": "SINAAPP.COM", "country": null, "whois_server": "whois.paycenter.com.cn", "state": null, "registrar": "XIN NET TECHNOLOGY CORPORATION", "referral_url": "http://www.xinnet.com", "address": null, "name_servers": [ "NS1.SINAAPP.COM", "NS2.SINAAPP.COM", "NS3.SINAAPP.COM", "NS4.SINAAPP.COM" ], "org": null, "creation_date": "2009-06-29 00:00:00", "emails": null } |
抓取第一個站點
簡單的爬蟲(crawling)代碼以下:
Python
1 2 3 4 5 6 7 8 9 10 |
import urllib2
def download(url): print 'Downloading:', url try: html = urllib2.urlopen(url).read() except urllib2.URLError as e: print 'Download error:', e.reason html = None return html |
能夠基於錯誤碼重試。HTTP狀態碼:https://tools.ietf.org/html/rfc7231#section-6。4**不必重試,5**能夠重試下。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import urllib2
def download(url, num_retries=2): print 'Downloading:', url try: html = urllib2.urlopen(url).read() except urllib2.URLError as e: print 'Download error:', e.reason html = None if num_retries > 0: if hasattr(e, 'code') and 500 http://httpstat.us/500 會返回500,能夠用它來測試下: >>> download('http://httpstat.us/500') Downloading: http://httpstat.us/500 Download error: Internal Server Error Downloading: http://httpstat.us/500 Download error: Internal Server Error Downloading: http://httpstat.us/500 Download error: Internal Server Error 設置 user agent: urllib2默認的user agent是「Python-urllib/2.7」,不少網站會對此進行攔截, 推薦使用接近真實的agent,好比 Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Firefox/38.0 爲此咱們增長user agent設置: import urllib2
def download(url, user_agent='Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Firefox/38.0', num_retries=2): print 'Downloading:', url headers = {'User-agent': user_agent} request = urllib2.Request(url, headers=headers) try: html = urllib2.urlopen(request).read() except urllib2.URLError as e: print 'Download error:', e.reason html = None if num_retries > 0: if hasattr(e, 'code') and 500
爬行站點地圖: def crawl_sitemap(url): # download the sitemap file sitemap = download(url) # extract the sitemap links links = re.findall('(.*?)', sitemap) # download each link for link in links: html = download(link) # scrape html here # ... ID循環爬行:• http://example.webscraping.com/view/Afghanistan-1• http://example.webscraping.com/view/Australia-2• http://example.webscraping.com/view/Brazil-3上面幾個網址僅僅是最後面部分不一樣,一般程序員喜歡用數據庫的id,好比:http://example.webscraping.com/view/1 ,這樣咱們就能夠數據庫的id抓取網頁。 for page in itertools.count(1): url = 'http://example.webscraping.com/view/-%d' % page html = download(url) if html is None: break else: # success - can scrape the result pass 固然數據庫有可能刪除了一條記錄,爲此咱們改進成以下: # maximum number of consecutive download errors allowed max_errors = 5 # current number of consecutive download errors num_errors = 0 for page in itertools.count(1): url = 'http://example.webscraping.com/view/-%d' % page html = download(url) if html is None: # received an error trying to download this webpage num_errors += 1 if num_errors == max_errors: # reached maximum number of # consecutive errors so exit break else: # success - can scrape the result # ... num_errors = 0 有些網站不存在的時候會返回404,有些網站的ID不是這麼有規則的,好比亞馬遜使用ISBN。
分析網頁 通常的瀏覽器都有"查看頁面源碼"的功能,在Firefox,Firebug尤爲方便。以上工具均可以郵件點擊網頁調出。抓取網頁數據主要有3種方法:正則表達式、BeautifulSoup和lxml。正則表達式示例: In [1]: import re
In [2]: import common
In [3]: url = 'http://example.webscraping.com/view/UnitedKingdom-239'
In [4]: html = common.download(url) Downloading: http://example.webscraping.com/view/UnitedKingdom-239
In [5]: re.findall('(.*?)', html) Out[5]: ['', '244,820 square kilometres', '62,348,447', 'GB', 'United Kingdom', 'London', 'EU', '.uk', 'GBP', 'Pound', '44', '@# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA', '^(([A-Z]\d{2}[A-Z]{2})|([A-Z]\d{3}[A-Z]{2})|([A-Z]{2}\d{2}[A-Z]{2})|([A-Z]{2}\d{3}[A-Z]{2})|([A-Z]\d[A-Z]\d[A-Z]{2})|([A-Z]{2}\d[A-Z]\d[A-Z]{2})|(GIR0AA))$', 'en-GB,cy-GB,gd', 'IE ']
In [6]: re.findall('(.*?)', html)[1] Out[6]: '244,820 square kilometres' |
維護成本比較高。
Beautiful Soup:
Python
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
In [7]: from bs4 import BeautifulSoup
In [8]: broken_html = '<ul class=country><li>Area<li>Population</ul>'
In [9]: # parse the HTML
In [10]: soup = BeautifulSoup(broken_html, 'html.parser')
In [11]: fixed_html = soup.prettify()
In [12]: print fixed_html <ul class="country"> <li> Area <li> Population </li> </li> </ul> In [13]: ul = soup.find('ul', attrs={'class':'country'})
In [14]: ul.find('li') # returns just the first match Out[14]: <li>Area<li>Population</li></li>
In [15]: ul.find_all('li') # returns all matches Out[15]: [<li>Area<li>Population</li></li>, <li>Population</li>] |
完整的例子:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
In [1]: from bs4 import BeautifulSoup
In [2]: url = 'http://example.webscraping.com/places/view/United-Kingdom-239'
In [3]: import common
In [5]: html = common.download(url) Downloading: http://example.webscraping.com/places/view/United-Kingdom-239
In [6]: soup = BeautifulSoup(html) /usr/lib/python2.7/site-packages/bs4/__init__.py:166: UserWarning: No parser was explicitly specified, so I'm using the best available HTML parser for this system ("lxml"). This usually isn't a problem, but if you run this code on another system, or in a different virtual environment, it may use a different parser and behave differently.
To get rid of this warning, change this:
BeautifulSoup([your markup])
to this:
BeautifulSoup([your markup], "lxml")
markup_type=markup_type))
In [7]: # locate the area row
In [8]: tr = soup.find(attrs={'id':'places_area__row'})
In [9]: td = tr.find(attrs={'class':'w2p_fw'}) # locate the area tag
In [10]: area = td.text # extract the text from this tag
In [11]: print area 244,820 square kilometres |
Lxml基於 libxml2(c語言實現),更快速,可是有時更難安裝。網址:http://lxml.de/installation.html。
Python
1 2 3 4 5 6 7 8 9 10 11 12 13 |
In [1]: import lxml.html
In [2]: broken_html = '<ul class=country><li>Area<li>Population</ul>'
In [3]: tree = lxml.html.fromstring(broken_html) # parse the HTML
In [4]: fixed_html = lxml.html.tostring(tree, pretty_print=True)
In [5]: print fixed_html <ul class="country"> <li>Area</li> <li>Population</li> </ul> |
lxml的容錯能力也比較強,少半邊標籤一般沒事。
下面使用css選擇器,注意安裝cssselect。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
In [1]: import common
In [2]: import lxml.html
In [3]: url = 'http://example.webscraping.com/places/view/United-Kingdom-239'
In [4]: html = common.download(url) Downloading: http://example.webscraping.com/places/view/United-Kingdom-239
In [5]: tree = lxml.html.fromstring(html)
In [6]: td = tree.cssselect('tr#places_area__row > td.w2p_fw')[0]
In [7]: area = td.text_content()
In [8]: print area 244,820 square kilometres |
在 CSS 中,選擇器是一種模式,用於選擇須要添加樣式的元素。
「CSS」 列指示該屬性是在哪一個 CSS 版本中定義的。(CSS一、CSS2 仍是 CSS3。)
選擇器 | 例子 | 例子描述 | CSS |
---|---|---|---|
.class | .intro | 選擇 class=」intro」 的全部元素。 | 1 |
#id | #firstname | 選擇 id=」firstname」 的全部元素。 | 1 |
* | * | 選擇全部元素。 | 2 |
element | p | 選擇全部元素。 | 1 |
element,element | div,p | 選擇全部 元素和全部元素。 |
1 |
element element | div p | 選擇 元素內部的全部元素。 |
1 |
element>element | div>p | 選擇父元素爲 元素的全部元素。 |
2 |
element+element | div+p | 選擇緊接在 元素以後的全部元素。 |
2 |
[attribute] | [target] | 選擇帶有 target 屬性全部元素。 | 2 |
[attribute=value] | [target=_blank] | 選擇 target=」_blank」 的全部元素。 | 2 |
[attribute~=value] | [title~=flower] | 選擇 title 屬性包含單詞 「flower」 的全部元素。 | 2 |
[attribute|=value] | [lang|=en] | 選擇 lang 屬性值以 「en」 開頭的全部元素。 | 2 |
:link | a:link | 選擇全部未被訪問的連接。 | 1 |
:visited | a:visited | 選擇全部已被訪問的連接。 | 1 |
:active | a:active | 選擇活動連接。 | 1 |
:hover | a:hover | 選擇鼠標指針位於其上的連接。 | 1 |
:focus | input:focus | 選擇得到焦點的 input 元素。 | 2 |
:first-letter | p:first-letter | 選擇每一個元素的首字母。 | 1 |
:first-line | p:first-line | 選擇每一個元素的首行。 | 1 |
:first-child | p:first-child | 選擇屬於父元素的第一個子元素的每一個元素。 | 2 |
:before | p:before | 在每一個元素的內容以前插入內容。 | 2 |
:after | p:after | 在每一個元素的內容以後插入內容。 | 2 |
:lang(language) | p:lang(it) | 選擇帶有以 「it」 開頭的 lang 屬性值的每一個元素。 | 2 |
element1~element2 | p~ul | 選擇前面有元素的每一個
|
3 |
[attribute^=value] | a[src^="https"] | 選擇其 src 屬性值以 「https」 開頭的每一個元素。 | 3 |
[attribute$=value] | a[src$=".pdf"] | 選擇其 src 屬性以 「.pdf」 結尾的全部 元素。 | 3 |
[attribute*=value] | a[src*="abc"] | 選擇其 src 屬性中包含 「abc」 子串的每一個元素。 | 3 |
:first-of-type | p:first-of-type | 選擇屬於其父元素的首個元素的每一個 元素。 |
3 |
:last-of-type | p:last-of-type | 選擇屬於其父元素的最後元素的每一個 元素。 |
3 |
:only-of-type | p:only-of-type | 選擇屬於其父元素惟一的元素的每一個 元素。 |
3 |
:only-child | p:only-child | 選擇屬於其父元素的惟一子元素的每一個元素。 | 3 |
:nth-child(n) | p:nth-child(2) | 選擇屬於其父元素的第二個子元素的每一個元素。 | 3 |
:nth-last-child(n) | p:nth-last-child(2) | 同上,從最後一個子元素開始計數。 | 3 |
:nth-of-type(n) | p:nth-of-type(2) | 選擇屬於其父元素第二個元素的每一個 元素。 |
3 |
:nth-last-of-type(n) | p:nth-last-of-type(2) | 同上,可是從最後一個子元素開始計數。 | 3 |
:last-child | p:last-child | 選擇屬於其父元素最後一個子元素每一個元素。 | 3 |
:root | :root | 選擇文檔的根元素。 | 3 |
:empty | p:empty | 選擇沒有子元素的每一個元素(包括文本節點)。 | 3 |
:target | #news:target | 選擇當前活動的 #news 元素。 | 3 |
:enabled | input:enabled | 選擇每一個啓用的 <input>元素。 | 3 |
:disabled | input:disabled | 選擇每一個禁用的 <input>元素 | 3 |
:checked | input:checked | 選擇每一個被選中的 <input>元素。 | 3 |
:not(selector) | :not(p) | 選擇非<p>元素的每一個元素。 | 3 |
::selection | ::selection | 選擇被用戶選取的元素部分。 | 3 |
CSS 選擇器參見:http://www.w3school.com.cn/cssref/css_selectors.ASP 和 https://pythonhosted.org/cssselect/#supported-selectors。
下面經過提取以下頁面的國家數據來比較性能:
比較代碼:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import urllib2 import itertools import re from bs4 import BeautifulSoup import lxml.html import time
FIELDS = ('area', 'population', 'iso', 'country', 'capital', 'continent', 'tld', 'currency_code', 'currency_name', 'phone', 'postal_code_format', 'postal_code_regex', 'languages', 'neighbours')
def download(url, user_agent='Mozilla/5.0 (X11; Linux x86_64; rv:38.0) Gecko/20100101 Firefox/38.0', num_retries=2): print 'Downloading:', url headers = {'User-agent': user_agent} request = urllib2.Request(url, headers=headers) try: html = urllib2.urlopen(request).read() except urllib2.URLError as e: print 'Download error:', e.reason html = None if num_retries > 0: if hasattr(e, 'code') and 500 (.*?)' % field, html.replace('n','')).groups()[0] return results
def bs_scraper(html): soup = BeautifulSoup(html, 'html.parser') results = {} for field in FIELDS: results[field] = soup.find('table').find('tr',id='places_%s__row' % field).find('td',class_='w2p_fw').text return results
def lxml_scraper(html): tree = lxml.html.fromstring(html) results = {} for field in FIELDS: results[field] = tree.cssselect('table > tr#places_%s__row> td.w2p_fw' % field)[0].text_content() return results
NUM_ITERATIONS = 1000 # number of times to test each scraper html = download('http://example.webscraping.com/places/view/United-Kingdom-239')
for name, scraper in [('Regular expressions', re_scraper),('BeautifulSoup', bs_scraper),('Lxml', lxml_scraper)]: # record start time of scrape start = time.time() for i in range(NUM_ITERATIONS): if scraper == re_scraper: re.purge() result = scraper(html) # check scraped result is as expected assert(result['area'] == '244,820 square kilometres')
# record end time of scrape and output the total end = time.time() print '%s: %.2f seconds' % (name, end - start) |
Windows執行結果:
1 2 3 4 |
Downloading: http://example.webscraping.com/places/view/United-Kingdom-239 Regular expressions: 11.63 seconds BeautifulSoup: 92.80 seconds Lxml: 7.25 seconds |
Linux執行結果:
1 2 3 4 |
Downloading: http://example.webscraping.com/places/view/United-Kingdom-239 Regular expressions: 3.09 seconds BeautifulSoup: 29.40 seconds Lxml: 4.25 seconds |
其中 re.purge() 用戶清正則表達式的緩存。
推薦使用基於Linux的lxml,在同一網頁屢次分析的狀況優點更爲明顯。
問啊-定製化IT教育平臺,牛人一對一服務,有問必答,開發編程社交頭條 官方網站:www.wenaaa.com 下載問啊APP,參與官方懸賞,賺百元現金。QQ羣290551701 彙集不少互聯網精英,技術總監,架構師,項目經理!開源技術研究,歡迎業內人士,大牛及新手有志於從事IT行業人員進入!