今天要介紹的是List接口中最經常使用的實現類——ArrayList,本篇的源碼分析基於JDK8,若是有不一致的地方,可先切換到JDK8後再進行操做。java
本篇的內容主要包括這幾塊:數組
1.源碼結構介紹安全
2.源代碼展現數據結構
3.要點說明併發
4.優缺點說明app
ArrayList的源碼跟以前的接口源碼比起來,那可就不能同日而語了,一千多行代碼,若是直接看的話確實有些費勁,但仔細看看就會發現,其實大體結構是這樣的:框架
其中包含了好四個內部類:less
ArrayListSpliterator:ArrayList可分割的迭代器,基於二分法的可分割迭代器,是爲了並行遍歷元素而設計的一種迭代器,jdk1.8 中的集合框架中的數據結構都默認實現了 spliterator。dom
Itr:實現Iterator接口的迭代器,爲ArrayList進行優化。ide
ListItr:實現ListIterator接口的迭代器,爲ArrayList進行優化。
SubList:實現了AbstractList和RandomAccess接口的子列表。
這四個內部類就佔了將近一半的篇幅,足可見其重要性。這四個類中前三個都是跟迭代器有關,最後一個是爲了處理局部列表而設計的子列表類。
下面是蹩腳翻譯講解版的源碼:
/** * ArrayList 是List接口的動態數組實現,實現了List的全部可選操做,而且容許全部元素,包括null。 * ArrayList 跟Vector差很少,但它不是線程安全的。 * ArrayList 的容量會根據列表大小自動調整。在添加大量元素以前,可使用ensureCapacity 方法來保證列表有足夠空間存放元素。 * ArrayList 不是線程安全的,因此若是多條線程將要對其進行結構性改變時(如添加刪除元素),須要使用synchronized 進行同步。 * 若是不存在這樣的對象,則須要使用其同步包裝類 Collections.synchronizedList * List list = Collections.synchronizedList(new ArrayList(...)); * * iterator() 方法將會返回一個listIterator,其中的方法是「fail-fast(快速失敗的)」,若是在建立了迭代器以後,在用迭代器遍歷一個列表時, * 若是遍歷過程當中對集合對象的內容進行了修改(增長、刪除、修改),則會拋出Concurrent Modification Exception。 * 但fail-fast 的行爲是沒法獲得保證的,不可能對是否出現不一樣步併發修改作出任何硬性保證。 * 快速失敗迭代器會盡最大努力拋出 ConcurrentModificationException。 * 所以,爲提升這類迭代器的正確性而編寫一個依賴於此異常的程序是錯誤的作法:迭代器的快速失敗行爲應該僅用於檢測 bug。 */ public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable { private static final long serialVersionUID = 8683452581122892189L; /** * 默認容量 */ private static final int DEFAULT_CAPACITY = 10; /** * 空實例共享的空數組 * todo 爲何要區分 EMPTY_ELEMENTDATA 與 DEFAULTCAPACITY_EMPTY_ELEMENTDATA */ private static final Object[] EMPTY_ELEMENTDATA = {}; /** * 默認大小的空實例共享的空數組 */ private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {}; /** * ArrayList的元素存儲在其中的數組緩衝區。ArrayList的容量是這個數組緩衝區的長度。 * 當添加第一個元素時,任何爲 DEFAULTCAPACITY_EMPTY_ELEMENTDATA 的空ArrayList的容量 * 將擴充到默認大小DEFAULT_CAPACITY(10)。 * 設置爲非private 是爲了方便內部類進行訪問 * * todo 內部動態數組的維護 */ transient Object[] elementData; /** * 列表中實際存儲的元素個數 * * todo size 與 capacity */ private int size; /** * 構造一個指定初始容量的空列表 */ public ArrayList(int initialCapacity) { if (initialCapacity > 0) { this.elementData = new Object[initialCapacity]; } else if (initialCapacity == 0) { this.elementData = EMPTY_ELEMENTDATA; } else { throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity); } } /** * 構造一個默認容量的空列表 */ public ArrayList() { this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA; } /** * 構造一個包含集合C中全部元素的列表,存儲順序爲集合C迭代器遍歷的順序 */ public ArrayList(Collection<? extends E> c) { elementData = c.toArray(); if ((size = elementData.length) != 0) { // c.toArray might (incorrectly) not return Object[] (see 6260652) if (elementData.getClass() != Object[].class) elementData = Arrays.copyOf(elementData, size, Object[].class); } else { // replace with empty array. this.elementData = EMPTY_ELEMENTDATA; } } /** * 調整容量大小到列表當前元素個數,以節約存儲空間 */ public void trimToSize() { //todo modCount的做用 modCount++; if (size < elementData.length) { elementData = (size == 0) ? EMPTY_ELEMENTDATA : Arrays.copyOf(elementData, size); } } /** * 增長列表容量以確保它至少能容納指定數量的元素 * * todo 擴容方式 */ public void ensureCapacity(int minCapacity) { //最小擴容量 //若是elementData是空數組則最小擴容量爲0,不然最小擴容量爲10 int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) ? 0 : DEFAULT_CAPACITY; //若是指定的容量比最小擴容量大,則進行擴容操做 if (minCapacity > minExpand) { ensureExplicitCapacity(minCapacity); } } private static int calculateCapacity(Object[] elementData, int minCapacity) { if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) { return Math.max(DEFAULT_CAPACITY, minCapacity); } return minCapacity; } private void ensureCapacityInternal(int minCapacity) { ensureExplicitCapacity(calculateCapacity(elementData, minCapacity)); } private void ensureExplicitCapacity(int minCapacity) { modCount++; // overflow-conscious code if (minCapacity - elementData.length > 0) grow(minCapacity); } /** * 數組容量最大值(- 8 是由於部分 JVM 須要在數組中存入部分頭信息) */ private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /** * 擴容函數,擴容1.5 倍,擴容後的列表大小在minCapacity與1.5 倍原大小之間取最大值 */ private void grow(int minCapacity) { // overflow-conscious code int oldCapacity = elementData.length; // >> 是右移運算符,做用結果是將原數值的二進制數右移指定位數,轉換成十進制的效果 // 就是除以2的指定次方,這裏右移一位即除以2 int newCapacity = oldCapacity + (oldCapacity >> 1); if (newCapacity - minCapacity < 0) newCapacity = minCapacity; if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); // minCapacity is usually close to size, so this is a win: elementData = Arrays.copyOf(elementData, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } /** * 元素個數 */ public int size() { return size; } /** * 是否爲空 */ public boolean isEmpty() { return size == 0; } /** * 是否包含某個元素 */ public boolean contains(Object o) { return indexOf(o) >= 0; } /** * 查找元素第一次出現的位置 */ public int indexOf(Object o) { if (o == null) { for (int i = 0; i < size; i++) if (elementData[i]==null) return i; } else { for (int i = 0; i < size; i++) if (o.equals(elementData[i])) return i; } return -1; } /** * 查找元素最後一次出現的位置 */ public int lastIndexOf(Object o) { if (o == null) { for (int i = size-1; i >= 0; i--) if (elementData[i]==null) return i; } else { for (int i = size-1; i >= 0; i--) if (o.equals(elementData[i])) return i; } return -1; } /** * 返回一個深克隆對象 */ public Object clone() { try { // Object 的克隆方法,複製本對象及其內全部基本類型成員和 String 類型成員 // 但不會複製引用對象 ArrayList<?> v = (ArrayList<?>) super.clone(); v.elementData = Arrays.copyOf(elementData, size); v.modCount = 0; return v; } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(e); } } /** * 轉化成對象數組 */ public Object[] toArray() { return Arrays.copyOf(elementData, size); } /** * 將列表轉存到數組a中,若是a的空間足夠則直接存放,不然會新建一個數組進行存儲 */ @SuppressWarnings("unchecked") public <T> T[] toArray(T[] a) { if (a.length < size) // Make a new array of a's runtime type, but my contents: return (T[]) Arrays.copyOf(elementData, size, a.getClass()); System.arraycopy(elementData, 0, a, 0, size); if (a.length > size) a[size] = null; return a; } // 位置訪問操做 @SuppressWarnings("unchecked") E elementData(int index) { return (E) elementData[index]; } /** * 取序號爲index的元素 */ public E get(int index) { rangeCheck(index); return elementData(index); } /** * 替換指定位置的元素,並返回原來的元素 */ public E set(int index, E element) { rangeCheck(index); E oldValue = elementData(index); elementData[index] = element; return oldValue; } /** * 添加元素 */ public boolean add(E e) { ensureCapacityInternal(size + 1); // Increments modCount!! elementData[size++] = e; return true; } /** * 插入元素 */ public void add(int index, E element) { rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!! System.arraycopy(elementData, index, elementData, index + 1, size - index); elementData[index] = element; size++; } /** * 移除指定序號的元素 */ public E remove(int index) { rangeCheck(index); modCount++; E oldValue = elementData(index); int numMoved = size - index - 1; if (numMoved > 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // clear to let GC do its work return oldValue; } /** * 移除某個元素 */ public boolean remove(Object o) { if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; } /* * 快速移除 */ private void fastRemove(int index) { modCount++; int numMoved = size - index - 1; if (numMoved > 0) //調用System.arraycopy 進行數組拷貝 //四個參數分別是:待拷貝的數組,原數組的拷貝起始位置,拷貝到的目標數組,目標數組的起始位置 //這裏至關於把原數組的一部分拷貝到另外一部分,將數組從index+1之後的部分總體往前移一個單位 //將index那個元素覆蓋掉 System.arraycopy(elementData, index+1, elementData, index, numMoved); //而後將最後一個元素置爲null elementData[--size] = null; // clear to let GC do its work } /** * 移除全部元素(將全部元素置爲null,容量不變) */ public void clear() { modCount++; // clear to let GC do its work for (int i = 0; i < size; i++) elementData[i] = null; size = 0; } /** * 將集合C中的全部元素添加到列表中 */ public boolean addAll(Collection<? extends E> c) { //先將c轉換爲數組,而後再複製過來 Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount System.arraycopy(a, 0, elementData, size, numNew); size += numNew; return numNew != 0; } /** * 將集合C中的元素插入指定位置 */ public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); Object[] a = c.toArray(); int numNew = a.length; ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index; if (numMoved > 0) System.arraycopy(elementData, index, elementData, index + numNew, numMoved); System.arraycopy(a, 0, elementData, index, numNew); size += numNew; return numNew != 0; } /** * 範圍性移除,移除列表裏序號從fromIndex到toIndex的全部元素,包含fromIndex,不包含toIndex */ protected void removeRange(int fromIndex, int toIndex) { modCount++; int numMoved = size - toIndex; System.arraycopy(elementData, toIndex, elementData, fromIndex, numMoved); // 將其他位置置爲null int newSize = size - (toIndex-fromIndex); for (int i = newSize; i < size; i++) { elementData[i] = null; } size = newSize; } /** * 檢測index是否超過邊界 */ private void rangeCheck(int index) { if (index >= size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * 插入時邊界檢測 */ private void rangeCheckForAdd(int index) { if (index > size || index < 0) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } /** * 生成 IndexOutOfBoundsException 的詳細信息 */ private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+size; } /** * 移除列表中全部存在於集合c中的元素 */ public boolean removeAll(Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, false); } /** * 僅保留全部在集合C中的元素 */ public boolean retainAll(Collection<?> c) { Objects.requireNonNull(c); return batchRemove(c, true); } private boolean batchRemove(Collection<?> c, boolean complement) { final Object[] elementData = this.elementData; int r = 0, w = 0; boolean modified = false; try { for (; r < size; r++) if (c.contains(elementData[r]) == complement) elementData[w++] = elementData[r]; } finally { if (r != size) { System.arraycopy(elementData, r, elementData, w, size - r); w += size - r; } if (w != size) { // clear to let GC do its work for (int i = w; i < size; i++) elementData[i] = null; modCount += size - w; size = w; modified = true; } } return modified; } /** * 將列表實例保存到輸出流(即序列化) */ private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException{ int expectedModCount = modCount; s.defaultWriteObject(); s.writeInt(size); for (int i=0; i<size; i++) { s.writeObject(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } /** * 從輸入流中讀取列表實例 */ private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException { elementData = EMPTY_ELEMENTDATA; s.defaultReadObject(); s.readInt(); // ignored if (size > 0) { int capacity = calculateCapacity(elementData, size); SharedSecrets.getJavaOISAccess().checkArray(s, Object[].class, capacity); ensureCapacityInternal(size); Object[] a = elementData; // Read in all elements in the proper order. for (int i=0; i<size; i++) { a[i] = s.readObject(); } } } /** * 返回一個從指定序號元素開始的ListIterator */ public ListIterator<E> listIterator(int index) { if (index < 0 || index > size) throw new IndexOutOfBoundsException("Index: "+index); return new ListItr(index); } /** * 返回一個ListIterator */ public ListIterator<E> listIterator() { return new ListItr(0); } /** * 返回一個Iterator */ public Iterator<E> iterator() { return new Itr(); } /** * 優化版本的Iterator * todo 迭代器中modCount的做用 */ private class Itr implements Iterator<E> { int cursor; // index of next element to return int lastRet = -1; // index of last element returned; -1 if no such int expectedModCount = modCount; Itr() {} public boolean hasNext() { return cursor != size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[lastRet = i]; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } @Override @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> consumer) { Objects.requireNonNull(consumer); final int size = ArrayList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[i++]); } // update once at end of iteration to reduce heap write traffic cursor = i; lastRet = i - 1; checkForComodification(); } final void checkForComodification() { if (modCount != expectedModCount) throw new ConcurrentModificationException(); } } /** * 優化版的ListIterator */ private class ListItr extends Itr implements ListIterator<E> { ListItr(int index) { super(); cursor = index; } public boolean hasPrevious() { return cursor != 0; } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[lastRet = i]; } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; ArrayList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } } /** * 獲取從 fromIndex 到 toIndex 之間的子集合 * 若是fromIndex == toIndex,則返回的空集合。對該子集合的操做,會影響原有集合。 */ public List<E> subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new SubList(this, 0, fromIndex, toIndex); } /** * 檢查傳入索引的合法性 */ static void subListRangeCheck(int fromIndex, int toIndex, int size) { if (fromIndex < 0) throw new IndexOutOfBoundsException("fromIndex = " + fromIndex); if (toIndex > size) throw new IndexOutOfBoundsException("toIndex = " + toIndex); if (fromIndex > toIndex) throw new IllegalArgumentException("fromIndex(" + fromIndex + ") > toIndex(" + toIndex + ")"); } /** * 內部類——子列表 */ private class SubList extends AbstractList<E> implements RandomAccess { private final AbstractList<E> parent; private final int parentOffset; private final int offset; int size; SubList(AbstractList<E> parent, int offset, int fromIndex, int toIndex) { this.parent = parent; this.parentOffset = fromIndex; this.offset = offset + fromIndex; this.size = toIndex - fromIndex; this.modCount = ArrayList.this.modCount; } public E set(int index, E e) { rangeCheck(index); checkForComodification(); E oldValue = ArrayList.this.elementData(offset + index); ArrayList.this.elementData[offset + index] = e; return oldValue; } public E get(int index) { rangeCheck(index); checkForComodification(); return ArrayList.this.elementData(offset + index); } public int size() { checkForComodification(); return this.size; } public void add(int index, E e) { rangeCheckForAdd(index); checkForComodification(); parent.add(parentOffset + index, e); this.modCount = parent.modCount; this.size++; } public E remove(int index) { rangeCheck(index); checkForComodification(); E result = parent.remove(parentOffset + index); this.modCount = parent.modCount; this.size--; return result; } protected void removeRange(int fromIndex, int toIndex) { checkForComodification(); parent.removeRange(parentOffset + fromIndex, parentOffset + toIndex); this.modCount = parent.modCount; this.size -= toIndex - fromIndex; } public boolean addAll(Collection<? extends E> c) { return addAll(this.size, c); } public boolean addAll(int index, Collection<? extends E> c) { rangeCheckForAdd(index); int cSize = c.size(); if (cSize==0) return false; checkForComodification(); parent.addAll(parentOffset + index, c); this.modCount = parent.modCount; this.size += cSize; return true; } public Iterator<E> iterator() { return listIterator(); } public ListIterator<E> listIterator(final int index) { checkForComodification(); rangeCheckForAdd(index); final int offset = this.offset; return new ListIterator<E>() { int cursor = index; int lastRet = -1; int expectedModCount = ArrayList.this.modCount; public boolean hasNext() { return cursor != ArrayList.SubList.this.size; } @SuppressWarnings("unchecked") public E next() { checkForComodification(); int i = cursor; if (i >= ArrayList.SubList.this.size) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i + 1; return (E) elementData[offset + (lastRet = i)]; } public boolean hasPrevious() { return cursor != 0; } @SuppressWarnings("unchecked") public E previous() { checkForComodification(); int i = cursor - 1; if (i < 0) throw new NoSuchElementException(); Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) throw new ConcurrentModificationException(); cursor = i; return (E) elementData[offset + (lastRet = i)]; } @SuppressWarnings("unchecked") public void forEachRemaining(Consumer<? super E> consumer) { Objects.requireNonNull(consumer); final int size = ArrayList.SubList.this.size; int i = cursor; if (i >= size) { return; } final Object[] elementData = ArrayList.this.elementData; if (offset + i >= elementData.length) { throw new ConcurrentModificationException(); } while (i != size && modCount == expectedModCount) { consumer.accept((E) elementData[offset + (i++)]); } // update once at end of iteration to reduce heap write traffic lastRet = cursor = i; checkForComodification(); } public int nextIndex() { return cursor; } public int previousIndex() { return cursor - 1; } public void remove() { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.SubList.this.remove(lastRet); cursor = lastRet; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void set(E e) { if (lastRet < 0) throw new IllegalStateException(); checkForComodification(); try { ArrayList.this.set(offset + lastRet, e); } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } public void add(E e) { checkForComodification(); try { int i = cursor; ArrayList.SubList.this.add(i, e); cursor = i + 1; lastRet = -1; expectedModCount = ArrayList.this.modCount; } catch (IndexOutOfBoundsException ex) { throw new ConcurrentModificationException(); } } final void checkForComodification() { if (expectedModCount != ArrayList.this.modCount) throw new ConcurrentModificationException(); } }; } public List<E> subList(int fromIndex, int toIndex) { subListRangeCheck(fromIndex, toIndex, size); return new ArrayList.SubList(this, offset, fromIndex, toIndex); } private void rangeCheck(int index) { if (index < 0 || index >= this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private void rangeCheckForAdd(int index) { if (index < 0 || index > this.size) throw new IndexOutOfBoundsException(outOfBoundsMsg(index)); } private String outOfBoundsMsg(int index) { return "Index: "+index+", Size: "+this.size; } private void checkForComodification() { if (ArrayList.this.modCount != this.modCount) throw new ConcurrentModificationException(); } public Spliterator<E> spliterator() { checkForComodification(); return new ArrayList.ArrayListSpliterator<E>(ArrayList.this, offset, offset + this.size, this.modCount); } } /** * 遍歷 */ @Override public void forEach(Consumer<? super E> action) { Objects.requireNonNull(action); final int expectedModCount = modCount; @SuppressWarnings("unchecked") final E[] elementData = (E[]) this.elementData; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { action.accept(elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } } /** * 建立一個分割器 */ @Override public Spliterator<E> spliterator() { return new ArrayList.ArrayListSpliterator<>(this, 0, -1, 0); } /** 基於索引的、二分的、懶加載的分割器*/ static final class ArrayListSpliterator<E> implements Spliterator<E> { //用於存放ArrayList對象 private final ArrayList<E> list; //起始位置(包含),advance/split操做時會修改 private int index; //結束位置(不包含),-1 表示到最後一個元素 private int fence; //用於存放list的modCount,當fence被設值後初始化 private int expectedModCount; /** 建立一個範圍性的分割器 */ ArrayListSpliterator(ArrayList<E> list, int origin, int fence, int expectedModCount) { this.list = list; // OK if null unless traversed this.index = origin; this.fence = fence; this.expectedModCount = expectedModCount; } //在第一次使用時實例化結束位置 private int getFence() { int hi; ArrayList<E> lst; if ((hi = fence) < 0) { if ((lst = list) == null) hi = fence = 0; else { expectedModCount = lst.modCount; hi = fence = lst.size; } } return hi; } /** * 分割list,返回一個新分割出的spliterator實例,至關於二分法,這個方法會遞歸 * 1.ArrayListSpliterator本質上仍是對原list進行操做,只是經過index和fence來控制每次處理範圍 * 2.ArrayListSpliterator在遍歷元素時,不能對list進行結構變動操做,不然拋錯。 */ public ArrayList.ArrayListSpliterator<E> trySplit() { int hi = getFence(), lo = index, mid = (lo + hi) >>> 1; return (lo >= mid) ? null : // divide range in half unless too small new ArrayList.ArrayListSpliterator<E>(list, lo, index = mid, expectedModCount); } /** * 返回true 時,只表示可能還有元素未處理 * 返回false 時,沒有剩餘元素須要處理 */ public boolean tryAdvance(Consumer<? super E> action) { if (action == null) throw new NullPointerException(); int hi = getFence(), i = index; if (i < hi) { index = i + 1; @SuppressWarnings("unchecked") E e = (E)list.elementData[i]; action.accept(e); if (list.modCount != expectedModCount) throw new ConcurrentModificationException(); return true; } return false; } /** * 順序遍歷處理全部剩下的元素 */ public void forEachRemaining(Consumer<? super E> action) { int i, hi, mc; // hoist accesses and checks from loop ArrayList<E> lst; Object[] a; if (action == null) throw new NullPointerException(); if ((lst = list) != null && (a = lst.elementData) != null) { if ((hi = fence) < 0) { mc = lst.modCount; hi = lst.size; } else mc = expectedModCount; if ((i = index) >= 0 && (index = hi) <= a.length) { for (; i < hi; ++i) { @SuppressWarnings("unchecked") E e = (E) a[i]; action.accept(e); } if (lst.modCount == mc) return; } } throw new ConcurrentModificationException(); } /** * 估算大小 */ public long estimateSize() { return (long) (getFence() - index); } /** * 獲取特徵值 */ public int characteristics() { return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED; } } /** * 條件過濾 */ @Override public boolean removeIf(Predicate<? super E> filter) { Objects.requireNonNull(filter); // figure out which elements are to be removed // any exception thrown from the filter predicate at this stage // will leave the collection unmodified int removeCount = 0; final BitSet removeSet = new BitSet(size); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { @SuppressWarnings("unchecked") final E element = (E) elementData[i]; if (filter.test(element)) { removeSet.set(i); removeCount++; } } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } // shift surviving elements left over the spaces left by removed elements final boolean anyToRemove = removeCount > 0; if (anyToRemove) { final int newSize = size - removeCount; for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) { i = removeSet.nextClearBit(i); elementData[j] = elementData[i]; } for (int k=newSize; k < size; k++) { elementData[k] = null; // Let gc do its work } this.size = newSize; if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } return anyToRemove; } /** * 所有替換 */ @Override @SuppressWarnings("unchecked") public void replaceAll(UnaryOperator<E> operator) { Objects.requireNonNull(operator); final int expectedModCount = modCount; final int size = this.size; for (int i=0; modCount == expectedModCount && i < size; i++) { elementData[i] = operator.apply((E) elementData[i]); } if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } /** * 用外部比較器來排序 */ @Override @SuppressWarnings("unchecked") public void sort(Comparator<? super E> c) { final int expectedModCount = modCount; Arrays.sort((E[]) elementData, 0, size, c); if (modCount != expectedModCount) { throw new ConcurrentModificationException(); } modCount++; } }
講真,我已經盡力了。
這部分主要根據上面的源碼進行說明,若是有不太清楚的地方,能夠返回上面的源碼進行查看。
1.ArrayList 其實只是內部維護了一個數組,經過暴露出方便操做的接口來簡化操做。
2.ArrayList中,size和capacity是兩碼事,size表示列表中實際存儲的元素個數,通常小於內部數組長度,而capacity表示容量,即內部數組的長度。
3.ArrayList中,默認的大小是10,當你使用new ArrayList();時並不會當即爲數組分配大小爲10的空間,而是等插入第一個元素時纔會真正分配,這樣作是爲了節約內存空間。
4.因爲上述目的的存在,爲了區分默認列表和空列表,設置了兩個空數組常量,EMPTY_ELEMENTDATA和DEFAULTCAPACITY_EMPTY_ELEMENTDATA,這樣在擴容時就能進行不一樣的處理。
5.維護內部數組時,使用的是Arrays.copyOf()方法和System.arraycopy()方法。
6.裏面有多處使用modCount,這個變量實際上是繼承自父類AbstractList,用來標識列表內部數組大小被修改的次數(如add,trimToSize等操做可能會觸發),元素的替換並不會改變它的值,迭代器的「fail-fast」機制跟這個modCount變量緊密相關,通常會在操做前賦值一次 expectedModCount = modCount; 在操做執行完以後再進行一次檢測,若是仍相等,說明結構未改變,不然將拋出異常,這也就是爲何上一篇中ArrayList修改過以後,操做迭代器會拋出異常的緣由。
7.在擴容時,默認的擴容因子是1.5,每次須要擴容時,會將原數組大小的1.5倍和實際須要的數組空間進行比較,從中取最大值做爲數組大小。而後新建一個數組,把原數組中的全部元素複製到新數組中去。因此擴容實際上是最耗費時間的操做,不只僅須要從新分配空間,並且須要從新賦值。
8.由於ArrayList的方法操做的都是同一個內部數組,而全部方法都沒有加鎖,沒有同步機制,因此它是線程不安全的。
9.ArrayList中能夠存放null值,能夠在源碼中看到,在比較時對null值都進行了處理。
由於列表實際上是內部維護管理着一個數組,因此數組的優勢它都具有。固然,數組的缺點它一樣也存在。
數組是將元素在內存中連續存放,因爲每一個元素佔用內存相同,能夠經過下標迅速訪問數組中任何元素。可是若是要在數組中增長一個元素,須要移動大量元素,在內存中空出一個元素的空間,而後將要增長的元素放在其中。一樣的道理,若是想刪除一個元素,一樣須要移動大量元素去填掉被移動的元素。
可是列表在維護這個內部數組時,仍是花了一點心思的,好比使用capacity的概念來減小數組結構改變的次數,因此並不會每次add操做都致使結構改變。將擴容因子選爲1.5而不是2,也是爲了在知足需求的前提下儘量的節約空間,但若是事先就知道元素的大概個數時,最好先在構造器中設置好列表的容量,這樣就能夠省掉很多擴容時的開銷。
呼。這篇準備了兩天才搞定,但願可以幫助到你們,若是有什麼遺漏或者講的不夠清晰的地方,歡迎指出,若是有說錯的知識點,也請不要吝嗇,歡迎指正。
看在我這樣辛勤耕做的份上,動動小手點個贊吧,也歡迎關注個人博客,後續還會持續更新。