使用DCGAN實現人臉圖像生成

DCGAN介紹

原始的GAN網絡在訓練過程當中生成者生成圖像質量不太穩定,沒法獲得高質量的生成者網絡,致使這個問題的主要緣由是生成者與判別者使用相同的反向傳播網絡,對生成者網絡的改進就是用卷積神經網絡替代原理的MLP實現穩定生成者網絡,生成高質量的圖像。這個就是Deep Convolutional Generative Adversarial Network (DCGAN)的由來。相比GAN,DCGAN把原來使用MLP的地方都改爲了CNN,同時去掉了池化層,改變以下:html

  • 判別器使用正常卷積,最後一層使用全鏈接層作預測判別
  • 生成器根據輸入的隨機噪聲,經過卷積神經網絡生成一張圖像
  • 不管是生成器仍是判別器都在卷積層後面有BN層
  • 生成器與判別器分別使用relu與leaky relu做爲激活函數, 除了生成器的最後一層
  • 生成器使用轉置/分步卷積、判別器使用正常卷積。

最終DCGAN的網絡模型以下:
使用DCGAN實現人臉圖像生成git

其中基於卷積神經網絡的生成器模型以下:使用DCGAN實現人臉圖像生成網絡

判別器模型以下:使用DCGAN實現人臉圖像生成ide

代碼實現:

生成器:函數

class Generator:
    def __init__(self, depths=[1024, 512, 256, 128], s_size=4):
        self.depths = depths + [3]
        self.s_size = s_size
        self.reuse = False

    def __call__(self, inputs, training=False):
        inputs = tf.convert_to_tensor(inputs)
        with tf.variable_scope('g', reuse=self.reuse):
            # reshape from inputs
            with tf.variable_scope('reshape'):
                outputs = tf.layers.dense(inputs, self.depths[0] * self.s_size * self.s_size)
                outputs = tf.reshape(outputs, [-1, self.s_size, self.s_size, self.depths[0]])
                outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=training), name='outputs')
            # deconvolution (transpose of convolution) x 4
            with tf.variable_scope('deconv1'):
                outputs = tf.layers.conv2d_transpose(outputs, self.depths[1], [5, 5], strides=(2, 2), padding='SAME')
                outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=training), name='outputs')
            with tf.variable_scope('deconv2'):
                outputs = tf.layers.conv2d_transpose(outputs, self.depths[2], [5, 5], strides=(2, 2), padding='SAME')
                outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=training), name='outputs')
            with tf.variable_scope('deconv3'):
                outputs = tf.layers.conv2d_transpose(outputs, self.depths[3], [5, 5], strides=(2, 2), padding='SAME')
                outputs = tf.nn.relu(tf.layers.batch_normalization(outputs, training=training), name='outputs')
            with tf.variable_scope('deconv4'):
                outputs = tf.layers.conv2d_transpose(outputs, self.depths[4], [5, 5], strides=(2, 2), padding='SAME')
            # output images
            with tf.variable_scope('tanh'):
                outputs = tf.tanh(outputs, name='outputs')
        self.reuse = True
        self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='g')
        return outputs

判別器:學習

class Discriminator:
    def __init__(self, depths=[64, 128, 256, 512]):
        self.depths = [3] + depths
        self.reuse = False

    def __call__(self, inputs, training=False, name=''):
        def leaky_relu(x, leak=0.2, name=''):
            return tf.maximum(x, x * leak, name=name)
        outputs = tf.convert_to_tensor(inputs)

        with tf.name_scope('d' + name), tf.variable_scope('d', reuse=self.reuse):
            # convolution x 4
            with tf.variable_scope('conv1'):
                outputs = tf.layers.conv2d(outputs, self.depths[1], [5, 5], strides=(2, 2), padding='SAME')
                outputs = leaky_relu(tf.layers.batch_normalization(outputs, training=training), name='outputs')
            with tf.variable_scope('conv2'):
                outputs = tf.layers.conv2d(outputs, self.depths[2], [5, 5], strides=(2, 2), padding='SAME')
                outputs = leaky_relu(tf.layers.batch_normalization(outputs, training=training), name='outputs')
            with tf.variable_scope('conv3'):
                outputs = tf.layers.conv2d(outputs, self.depths[3], [5, 5], strides=(2, 2), padding='SAME')
                outputs = leaky_relu(tf.layers.batch_normalization(outputs, training=training), name='outputs')
            with tf.variable_scope('conv4'):
                outputs = tf.layers.conv2d(outputs, self.depths[4], [5, 5], strides=(2, 2), padding='SAME')
                outputs = leaky_relu(tf.layers.batch_normalization(outputs, training=training), name='outputs')
            with tf.variable_scope('classify'):
                batch_size = outputs.get_shape()[0].value
                reshape = tf.reshape(outputs, [batch_size, -1])
                outputs = tf.layers.dense(reshape, 2, name='outputs')
        self.reuse = True
        self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='d')
        return outputs

損失函數與訓練ui

def loss(self, traindata):
    """build models, calculate losses.
    Args:
        traindata: 4-D Tensor of shape `[batch, height, width, channels]`.
    Returns:
        dict of each models' losses.
    """
    generated = self.g(self.z, training=True)
    g_outputs = self.d(generated, training=True, name='g')
    t_outputs = self.d(traindata, training=True, name='t')
    # add each losses to collection
    tf.add_to_collection(
        'g_losses',
        tf.reduce_mean(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                labels=tf.ones([self.batch_size], dtype=tf.int64),
                logits=g_outputs)))
    tf.add_to_collection(
        'd_losses',
        tf.reduce_mean(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                labels=tf.ones([self.batch_size], dtype=tf.int64),
                logits=t_outputs)))
    tf.add_to_collection(
        'd_losses',
        tf.reduce_mean(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                labels=tf.zeros([self.batch_size], dtype=tf.int64),
                logits=g_outputs)))
    return {
        self.g: tf.add_n(tf.get_collection('g_losses'), name='total_g_loss'),
        self.d: tf.add_n(tf.get_collection('d_losses'), name='total_d_loss'),
    }

def train(self, losses, learning_rate=0.0002, beta1=0.5):
    """
    Args:
        losses dict.
    Returns:
        train op.
    """
    g_opt = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1)
    d_opt = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=beta1)
    g_opt_op = g_opt.minimize(losses[self.g], var_list=self.g.variables)
    d_opt_op = d_opt.minimize(losses[self.d], var_list=self.d.variables)
    with tf.control_dependencies([g_opt_op, d_opt_op]):
        return tf.no_op(name='train')

訓練與運行

使用DCGAN實現人臉圖像生成
開始
使用DCGAN實現人臉圖像生成
2個epoch以後
使用DCGAN實現人臉圖像生成
5個epoch以後
使用DCGAN實現人臉圖像生成spa

OpenCV+tensorflow系統化學習路線圖,推薦視頻教程:
計算機視覺從入門到實戰code

相關文章
相關標籤/搜索