KafkaProducer Sender 線程詳解(含詳細的執行流程圖)

舒適提示:本文基於 Kafka 2.2.1 版本。node

上文 《源碼分析 Kafka 消息發送流程》 已經詳細介紹了 KafkaProducer send 方法的流程,該方法只是將消息追加到 KafKaProducer 的緩存中,並未真正的向 broker 發送消息,本文未來探討 Kafka 的 Sender 線程。api

@(本節目錄)
在 KafkaProducer 中會啓動一個單獨的線程,其名稱爲 「kafka-producer-network-thread | clientID」,其中 clientID 爲生產者的 id 。緩存

一、Sender 線程詳解

1.1 類圖

在這裏插入圖片描述
咱們先來看一下其各個屬性的含義:服務器

  • KafkaClient client
    kafka 網絡通訊客戶端,主要封裝與 broker 的網絡通訊。
  • RecordAccumulator accumulator
    消息記錄累積器,消息追加的入口(RecordAccumulator 的 append 方法)。
  • Metadata metadata
    元數據管理器,即 topic 的路由分區信息。
  • boolean guaranteeMessageOrder
    是否須要保證消息的順序性。
  • int maxRequestSize
    調用 send 方法發送的最大請求大小,包括 key、消息體序列化後的消息總大小不能超過該值。經過參數 max.request.size 來設置。
  • short acks
    用來定義消息「已提交」的條件(標準),就是 Broker 端向客戶端承偌已提交的條件,可選值以下0、-一、1.
  • int retries
    重試次數。
  • Time time
    時間工具類。
  • boolean running
    該線程狀態,爲 true 表示運行中。
  • boolean forceClose
    是否強制關閉,此時會忽略正在發送中的消息。
  • SenderMetrics sensors
    消息發送相關的統計指標收集器。
  • int requestTimeoutMs
    請求的超時時間。
  • long retryBackoffMs
    請求失敗之在重試以前等待的時間。
  • ApiVersions apiVersions
    API版本信息。
  • TransactionManager transactionManager
    事務處理器。
  • Map< TopicPartition, List< ProducerBatch>> inFlightBatches
    正在執行發送相關的消息批次。

1.2 run 方法詳解

Sender#run網絡

public void run() {
    log.debug("Starting Kafka producer I/O thread.");
    while (running) {   
        try {
            runOnce();    // @1
        } catch (Exception e) {
            log.error("Uncaught error in kafka producer I/O thread: ", e);
        }
    }
    log.debug("Beginning shutdown of Kafka producer I/O thread, sending remaining records.");
    while (!forceClose && (this.accumulator.hasUndrained() || this.client.inFlightRequestCount() > 0)) {    // @2
        try {
            runOnce();
        } catch (Exception e) {
            log.error("Uncaught error in kafka producer I/O thread: ", e);
        }
    }
    if (forceClose) {                                                                                                                                     // @3
        log.debug("Aborting incomplete batches due to forced shutdown");
        this.accumulator.abortIncompleteBatches();
    }
    try {
        this.client.close();                                                                                                                               // @4
    } catch (Exception e) {
        log.error("Failed to close network client", e);
    }
    log.debug("Shutdown of Kafka producer I/O thread has completed.");
}

代碼@1:Sender 線程在運行狀態下主要的業務處理方法,將消息緩存區中的消息向 broker 發送。
代碼@2:若是主動關閉 Sender 線程,若是不是強制關閉,則若是緩存區還有消息待發送,再次調用 runOnce 方法將剩餘的消息發送完畢後再退出。
代碼@3:若是強制關閉 Sender 線程,則拒絕未完成提交的消息。
代碼@4:關閉 Kafka Client 即網絡通訊對象。數據結構

接下來將分別探討其上述方法的實現細節。併發

1.2.1 runOnce 詳解

Sender#runOnceapp

void runOnce() {
    // 此處省略與事務消息相關的邏輯
    long currentTimeMs = time.milliseconds();
    long pollTimeout = sendProducerData(currentTimeMs);   // @1
    client.poll(pollTimeout, currentTimeMs);                            // @2
}

本文不關注事務消息的實現原理,故省略了該部分的代碼。
代碼@1:調用 sendProducerData 方法發送消息。
代碼@2:調用這個方法的做用?工具

接下來分別對上述兩個方法進行深刻探究。

1.1.2.1 sendProducerData

接下來將詳細分析其實現步驟。
Sender#sendProducerData

Cluster cluster = metadata.fetch();
// get the list of partitions with data ready to send
RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);

Step1:首先根據當前時間,根據緩存隊列中的數據判斷哪些 topic 的 哪些分區已經達到發送條件。達到可發送的條件將在 2.1.1.1 節詳細分析。

Sender#sendProducerData

if (!result.unknownLeaderTopics.isEmpty()) {
    for (String topic : result.unknownLeaderTopics)
        this.metadata.add(topic);
    
    log.debug("Requesting metadata update due to unknown leader topics from the batched records: {}",
                result.unknownLeaderTopics);
    this.metadata.requestUpdate();
}

Step2:若是在待發送的消息未找到其路由信息,則須要首先去 broker 服務器拉取對應的路由信息(分區的 leader 節點信息)。

Sender#sendProducerData

long notReadyTimeout = Long.MAX_VALUE;
while (iter.hasNext()) {
    Node node = iter.next();
    if (!this.client.ready(node, now)) {
        iter.remove();
        notReadyTimeout = Math.min(notReadyTimeout, this.client.pollDelayMs(node, now));
    }
}

Step3:移除在網絡層面沒有準備好的分區,而且計算在接下來多久的時間間隔內,該分區都將處於未準備狀態。
一、在網絡環節沒有準備好的標準以下:

  • 分區沒有未完成的更新元素數據請求(metadata)。
  • 當前生產者與對端 broker 已創建鏈接並完成了 TCP 的三次握手。
  • 若是啓用 SSL、ACL 等機制,相關狀態都已就緒。
  • 該分區對應的鏈接正在處理中的請求數時是否超過設定值,默認爲 5,可經過屬性 max.in.flight.requests.per.connection 來設置。

二、client pollDelayMs 預估分區在接下來多久的時間間隔內都將處於未轉變好狀態(not ready),其標準以下:

  • 若是已與對端的 TCP 鏈接已建立好,並處於已鏈接狀態,此時若是沒有觸發限流,則返回0,若是有觸發限流,則返回限流等待時間。
  • 若是還位於對端創建 TCP 鏈接,則返回 Long.MAX_VALUE,由於鏈接創建好後,會喚醒發送線程的。

Sender#sendProducerData

// create produce requests
Map<Integer, List<ProducerBatch>> batches = this.accumulator.drain(cluster, result.readyNodes, this.maxRequestSize, now);

Step4:根據已準備的分區,從緩存區中抽取待發送的消息批次(ProducerBatch),而且按照 nodeId:List 組織,注意,抽取後的 ProducerBatch 將不能再追加消息了,就算還有剩餘空間可用,具體抽取將在下文在詳細介紹。

Sender#sendProducerData

addToInflightBatches(batches);
public void addToInflightBatches(Map<Integer, List<ProducerBatch>> batches) {
    for (List<ProducerBatch> batchList : batches.values()) {
        addToInflightBatches(batchList);
    }
}
private void addToInflightBatches(List<ProducerBatch> batches) {
    for (ProducerBatch batch : batches) {
        List<ProducerBatch> inflightBatchList = inFlightBatches.get(batch.topicPartition);
        if (inflightBatchList == null) {
            inflightBatchList = new ArrayList<>();
            inFlightBatches.put(batch.topicPartition, inflightBatchList);
        }
        inflightBatchList.add(batch);
    }
}

Step5:將抽取的 ProducerBatch 加入到 inFlightBatches 數據結構,該屬性的聲明以下:Map<TopicPartition, List< ProducerBatch >> inFlightBatches,即按照 topic-分區 爲鍵,存放已抽取的 ProducerBatch,這個屬性的含義就是存儲待發送的消息批次。能夠根據該數據結構得知在消息發送時以分區爲維度反饋 Sender 線程的「積壓狀況」,max.in.flight.requests.per.connection 就是來控制積壓的最大數量,若是積壓達到這個數值,針對該隊列的消息發送會限流。

Sender#sendProducerData

accumulator.resetNextBatchExpiryTime();
List<ProducerBatch> expiredInflightBatches = getExpiredInflightBatches(now);
List<ProducerBatch> expiredBatches = this.accumulator.expiredBatches(now);
expiredBatches.addAll(expiredInflightBatches);

Step6:從 inflightBatches 與 batches 中查找已過時的消息批次(ProducerBatch),判斷是否過時的標準是系統當前時間與 ProducerBatch 建立時間之差是否超過120s,過時時間能夠經過參數 delivery.timeout.ms 設置。

Sender#sendProducerData

if (!expiredBatches.isEmpty())
    log.trace("Expired {} batches in accumulator", expiredBatches.size());
for (ProducerBatch expiredBatch : expiredBatches) {
    String errorMessage = "Expiring " + expiredBatch.recordCount + " record(s) for " + expiredBatch.topicPartition
                + ":" + (now - expiredBatch.createdMs) + " ms has passed since batch creation";
    failBatch(expiredBatch, -1, NO_TIMESTAMP, new TimeoutException(errorMessage), false);
    if (transactionManager != null && expiredBatch.inRetry()) {
        // This ensures that no new batches are drained until the current in flight batches are fully resolved.
        transactionManager.markSequenceUnresolved(expiredBatch.topicPartition);
    }
}

Step7:處理已超時的消息批次,通知該批消息發送失敗,即經過設置 KafkaProducer#send 方法返回的憑證中的 FutureRecordMetadata 中的 ProduceRequestResult result,使之調用其 get 方法不會阻塞。

Sender#sendProducerData

sensors.updateProduceRequestMetrics(batches);

Step8:收集統計指標,本文不打算詳細分析,但後續會專門對 Kafka 的 Metrics 設計進行一個深刻的探討與學習。

Sender#sendProducerData

long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout);
pollTimeout = Math.min(pollTimeout, this.accumulator.nextExpiryTimeMs() - now);
pollTimeout = Math.max(pollTimeout, 0);
if (!result.readyNodes.isEmpty()) {
    log.trace("Nodes with data ready to send: {}", result.readyNodes);
    pollTimeout = 0;
}

Step9:設置下一次的發送延時,待補充詳細分析。

Sender#sendProducerData

sendProduceRequests(batches, now);
private void sendProduceRequests(Map<Integer, List<ProducerBatch>> collated, long now) {
    for (Map.Entry<Integer, List<ProducerBatch>> entry : collated.entrySet())
        sendProduceRequest(now, entry.getKey(), acks, requestTimeoutMs, entry.getValue());
}

Step10:該步驟按照 brokerId 分別構建發送請求,即每個 broker 會將多個 ProducerBatch 一塊兒封裝成一個請求進行發送,同一時間,每個 與 broker 鏈接只會只能發送一個請求,注意,這裏只是構建請求,並最終會經過 NetworkClient#send 方法,將該批數據設置到 NetworkClient 的待發送數據中,此時並無觸發真正的網絡調用。

sendProducerData 方法就介紹到這裏了,既然這裏尚未進行真正的網絡請求,那在何時觸發呢?

咱們繼續回到 runOnce 方法。

1.2.1.2 NetworkClient 的 poll 方法
public List<ClientResponse> poll(long timeout, long now) {
    ensureActive();

    if (!abortedSends.isEmpty()) {
        // If there are aborted sends because of unsupported version exceptions or disconnects,
        // handle them immediately without waiting for Selector#poll.
        List<ClientResponse> responses = new ArrayList<>();
        handleAbortedSends(responses);
        completeResponses(responses);
        return responses;
    }

    long metadataTimeout = metadataUpdater.maybeUpdate(now);   // @1
    try {
        this.selector.poll(Utils.min(timeout, metadataTimeout, defaultRequestTimeoutMs));    // @2
    } catch (IOException e) {
        log.error("Unexpected error during I/O", e);
    }

    // process completed actions
    long updatedNow = this.time.milliseconds();
    List<ClientResponse> responses = new ArrayList<>();            // @3
    handleCompletedSends(responses, updatedNow);
    handleCompletedReceives(responses, updatedNow);
    handleDisconnections(responses, updatedNow);
    handleConnections();
    handleInitiateApiVersionRequests(updatedNow);
    handleTimedOutRequests(responses, updatedNow);
    completeResponses(responses);                                               // @4
    return responses;
}

本文並不會詳細深刻探討其網絡實現部分,Kafka 的 網絡通信後續我會專門詳細的介紹,在這裏先點出其關鍵點。
代碼@1:嘗試更新雲數據。
代碼@2:觸發真正的網絡通信,該方法中會經過收到調用 NIO 中的 Selector#select() 方法,對通道的讀寫就緒事件進行處理,當寫事件就緒後,就會將通道中的消息發送到遠端的 broker。
代碼@3:而後會消息發送,消息接收、斷開鏈接、API版本,超時等結果進行收集。
代碼@4:並依次對結果進行喚醒,此時會將響應結果設置到 KafkaProducer#send 方法返回的憑證中,從而喚醒發送客戶端,完成一次完整的消息發送流程。

Sender 發送線程的流程就介紹到這裏了,接下來首先給出一張流程圖,而後對上述流程中一些關鍵的方法再補充深刻探討一下。

1.2.2 run 方法流程圖

在這裏插入圖片描述
根據上面的源碼分析得出上述流程圖,圖中對重點步驟也詳細標註了其關鍵點。下面咱們對上述流程圖中 Sender 線程依賴的相關類的核心方法進行解讀,以便加深 Sender 線程的理解。

因爲在講解 Sender 發送流程中,大部分都是調用 RecordAccumulator 方法來實現其特定邏輯,故接下來重點對上述涉及到RecordAccumulator 的方法進行一個詳細剖析,增強對 Sender 流程的理解。

二、RecordAccumulator 核心方法詳解

2.1 RecordAccumulator 的 ready 方法詳解

該方法主要就是根據緩存區中的消息,判斷哪些分區已經達到發送條件。

RecordAccumulator#ready

public ReadyCheckResult ready(Cluster cluster, long nowMs) {
    Set<Node> readyNodes = new HashSet<>();
    long nextReadyCheckDelayMs = Long.MAX_VALUE;
    Set<String> unknownLeaderTopics = new HashSet<>();

    boolean exhausted = this.free.queued() > 0;
    for (Map.Entry<TopicPartition, Deque<ProducerBatch>> entry : this.batches.entrySet()) {   // @1
        TopicPartition part = entry.getKey();
        Deque<ProducerBatch> deque = entry.getValue();

        Node leader = cluster.leaderFor(part);   // @2
        synchronized (deque) {
            if (leader == null && !deque.isEmpty()) {   // @3
                // This is a partition for which leader is not known, but messages are available to send.
                // Note that entries are currently not removed from batches when deque is empty.
                unknownLeaderTopics.add(part.topic());
            } else if (!readyNodes.contains(leader) && !isMuted(part, nowMs)) {    // @4
                ProducerBatch batch = deque.peekFirst();
                if (batch != null) {
                    long waitedTimeMs = batch.waitedTimeMs(nowMs);
                    boolean backingOff = batch.attempts() > 0 && waitedTimeMs < retryBackoffMs;
                    long timeToWaitMs = backingOff ? retryBackoffMs : lingerMs;
                    boolean full = deque.size() > 1 || batch.isFull();
                    boolean expired = waitedTimeMs >= timeToWaitMs;
                    boolean sendable = full || expired || exhausted || closed || flushInProgress();
                    if (sendable && !backingOff) {   // @5
                        readyNodes.add(leader);
                    } else {
                        long timeLeftMs = Math.max(timeToWaitMs - waitedTimeMs, 0);
                        // Note that this results in a conservative estimate since an un-sendable partition may have
                        // a leader that will later be found to have sendable data. However, this is good enough
                        // since we'll just wake up and then sleep again for the remaining time.
                        nextReadyCheckDelayMs = Math.min(timeLeftMs, nextReadyCheckDelayMs);   
                    }
                }
            }
        }
    }
    return new ReadyCheckResult(readyNodes, nextReadyCheckDelayMs, unknownLeaderTopics);
}

代碼@1:對生產者緩存區 ConcurrentHashMap<TopicPartition, Deque< ProducerBatch>> batches 遍歷,從中挑選已準備好的消息批次。
代碼@2:從生產者元數據緩存中嘗試查找分區(TopicPartition) 的 leader 信息,若是不存在,當將該 topic 添加到 unknownLeaderTopics (代碼@3),稍後會發送元數據更新請求去 broker 端查找分區的路由信息。
代碼@4:若是不在 readyNodes 中就須要判斷是否知足條件,isMuted 與順序消息有關,本文暫時不關注,在後面的順序消息部分會重點探討。
代碼@5:這裏就是判斷是否準備好的條件,先一個一個來解讀局部變量的含義。

  • long waitedTimeMs
    該 ProducerBatch 已等待的時長,等於當前時間戳 與 ProducerBatch 的 lastAttemptMs 之差,在 ProducerBatch 建立時或須要重試時會將當前的時間賦值給lastAttemptMs。
  • retryBackoffMs
    當發生異常時發起重試以前的等待時間,默認爲 100ms,可經過屬性 retry.backoff.ms 配置。
  • batch.attempts()
    該批次當前已重試的次數。
  • backingOff
    後臺發送是否關閉,即若是須要重試而且等待時間小於 retryBackoffMs ,則 backingOff = true,也意味着該批次未準備好。
  • timeToWaitMs
    send 線程發送消息須要的等待時間,若是 backingOff 爲 true,表示該批次是在重試,而且等待時間小於系統設置的須要等待時間,這種狀況下 timeToWaitMs = retryBackoffMs 。不然須要等待的時間爲 lingerMs。
  • boolean full
    該批次是否已滿,若是兩個條件中的任意一個知足即爲 true。
    • Deque< ProducerBatch> 該隊列的個數大於1,表示確定有一個 ProducerBatch 已寫滿。
    • ProducerBatch 已寫滿。
  • boolean expired
    是否過時,等於已經等待的時間是否大於須要等待的時間,若是把發送當作定時發送的話,expired 爲 true 表示定時器已到達觸發點,即須要執行。
  • boolean exhausted
    當前生產者緩存已不夠,建立新的 ProducerBatch 時阻塞在申請緩存空間的線程大於0,此時應當即將緩存區中的消息當即發送到服務器。
  • boolean sendable
    是否可發送。其知足下面的任意一個條件便可:
    • 該批次已寫滿。(full = true)。
    • 已等待系統規定的時長。(expired = true)
    • 發送者內部緩存區已耗盡而且有新的線程須要申請(exhausted = true)。
    • 該發送者的 close 方法被調用(close = true)。
    • 該發送者的 flush 方法被調用。

2.2 RecordAccumulator 的 drain方法詳解

RecordAccumulator#drain

public Map<Integer, List<ProducerBatch>> drain(Cluster cluster, Set<Node> nodes, int maxSize, long now) { // @1
    if (nodes.isEmpty())
        return Collections.emptyMap();

    Map<Integer, List<ProducerBatch>> batches = new HashMap<>();
    for (Node node : nodes) {                                                                                                                              
        List<ProducerBatch> ready = drainBatchesForOneNode(cluster, node, maxSize, now);                      // @2
        batches.put(node.id(), ready);
    }
    return batches;
}

代碼@1:咱們首先來介紹該方法的參數:

  • Cluster cluster
    集羣信息。
  • Set< Node> nodes
    已準備好的節點集合。
  • int maxSize
    一次請求最大的字節數。
  • long now
    當前時間。

代碼@2:遍歷全部節點,調用 drainBatchesForOneNode 方法抽取數據,組裝成 Map<Integer /** brokerId */, List< ProducerBatch>> batches。

接下來重點來看一下 drainBatchesForOneNode。
RecordAccumulator#drainBatchesForOneNode

private List<ProducerBatch> drainBatchesForOneNode(Cluster cluster, Node node, int maxSize, long now) {
    int size = 0;
    List<PartitionInfo> parts = cluster.partitionsForNode(node.id());   // @1
    List<ProducerBatch> ready = new ArrayList<>();
    int start = drainIndex = drainIndex % parts.size();                        // @2
    do {                                                                                                // @3 
        PartitionInfo part = parts.get(drainIndex);
        TopicPartition tp = new TopicPartition(part.topic(), part.partition()); 
        this.drainIndex = (this.drainIndex + 1) % parts.size();                     
            
        if (isMuted(tp, now))
            continue;

        Deque<ProducerBatch> deque = getDeque(tp);                              // @4
        if (deque == null)
            continue;

        synchronized (deque) {
            // invariant: !isMuted(tp,now) && deque != null
            ProducerBatch first = deque.peekFirst();                                         // @5
            if (first == null)
                continue;

            // first != null
            boolean backoff = first.attempts() > 0 && first.waitedTimeMs(now) < retryBackoffMs;   // @6
            // Only drain the batch if it is not during backoff period.
            if (backoff)                                                                                     
                continue;

            if (size + first.estimatedSizeInBytes() > maxSize && !ready.isEmpty()) {     // @7
                break;
            } else {
                if (shouldStopDrainBatchesForPartition(first, tp))                                  
                    break;

                // 這裏省略與事務消息相關的代碼,後續會重點學習。
                batch.close();                                                                                            // @8
                size += batch.records().sizeInBytes();
                ready.add(batch);                                                                            

                batch.drained(now);                                                                             
            }
        }
    } while (start != drainIndex);
    return ready;
}

代碼@1:根據 brokerId 獲取該 broker 上的全部主分區。
代碼@2:初始化 start。這裏首先來闡述一下 start 與 drainIndex 。

  • start 當前開始遍歷的分區序號。
  • drainIndex 上次抽取的隊列索引後,這裏主要是爲了每一個隊列都是從零號分區開始抽取。

代碼@3:循環從緩存區抽取對應分區中累積的數據。
代碼@4:根據 topic + 分區號從生產者發送緩存區中獲取已累積的雙端Queue。
代碼@5:從雙端隊列的頭部獲取一個元素。(消息追加時是追加到隊列尾部)。
代碼@6:若是當前批次是重試,而且還未到阻塞時間,則跳過該分區。
代碼@7:若是當前已抽取的消息總大小 加上新的消息已超過 maxRequestSize,則結束抽取。
代碼@8:將當前批次加入到已準備集合中,並關閉該批次,即不在容許向該批次中追加消息。

關於消息發送就介紹到這裏,NetworkClient 的 poll 方法內部會調用 Selector 執行就緒事件的選擇,並將抽取的消息經過網絡發送到 Broker 服務器,關於網絡後面的具體實現,將在後續文章中單獨介紹。


做者介紹:
丁威,《RocketMQ技術內幕》做者,RocketMQ 社區佈道師,公衆號:中間件興趣圈 維護者,目前已陸續發表源碼分析Java集合、Java 併發包(JUC)、Netty、Mycat、Dubbo、RocketMQ、Mybatis等源碼專欄。歡迎加入個人知識星球,構建一個高質量的技術交流社羣。
在這裏插入圖片描述

相關文章
相關標籤/搜索