import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import seaborn as sns
matplotlib參數設置css
matplotlib.rcParams['font.sans-serif'] = ['SimHei'] matplotlib.rcParams['font.family']='sans-serif' matplotlib.rcParams['axes.unicode_minus'] = False #matplotlib.fontsize='15' #plt.rcParams['figure.figsize'] = (12.0,5.0) #設置圖形大小 #圖形內嵌式,notebook模式下(註釋不可加在下列命令後) %matplotlib inline #ipython模式下 #%pylab inline
seaborn參數設置html
#Seaborn有兩組函數對風格進行控制:axes_style()/set_style()函數和plotting_context()/set_context()函數。 #Seaborn有5種預約義的主題:darkgrid(默認)、whitegrid、dark、white、ticks #Seaborn有4種預約義的上下文:paper、notebook(默認)、talk、poster sns.set_style("whitegrid") ''' sns.set_context("poster") sns.set_style(style=None, rc=None) sns.despine(offset=10) #圖與軸線距離 sns.despine() #去除刻度和軸線 sns.set_context(fontscale=1.5) #字體大小 sns.set_context(rc={'lines.linewidth':1.5) #線寬 sns.set() #恢復默認值 '''
其餘參數設置python
myfont = matplotlib.font_manager.FontProperties(fname="simsun.ttc") #自定義字體庫simsun.ttc ax1.set_xlabel('時間', fontproperties=myfont, size=18) #原始matplotlib不支持中文 plt.gcf().set_facecolor(np.ones(3) * 240/255) #設置背景色 plt.gcf().autofmt_xdate() #自動適應刻度線密度,包括x軸,y軸 plt.legend(loc=1) #1,2,3,4分別對應圖像的右上角,左上角,左下角,右下角 ax.invert_xaxis() #將x軸逆序
線圖(1)git
#數據 x=np.linspace(0,10,1000) y1=np.sin(x) y2=np.cos(x) y3=np.cos(x**2) plt.figure(1) #圖編號 plt.subplot(221) plt.plot(x,y1,label="$sin(x)$",color="red",linewidth=2) plt.plot(x,y2,label="$cos(x)$",color="blue",linewidth=2) plt.subplot(222) plt.scatter(x[:1000:50],y2[:1000:50],color="blue",label="$cos(x^2)$") plt.subplot(212) #改變圖分塊 plt.plot(x,y1+y3,"g-",label="$sin(x)+cos(x^2)$") plt.xlabel("time") plt.ylabel("value") plt.title("$sin(x)+cos(x^2)$ curve") plt.xlim(-0.2,10.2) plt.legend()#顯示左下角的圖例 plt.subplots_adjust(left=0.08,right=0.95,wspace=0.25,hspace=0.45) #subplots_adjust相似於網頁css格式化中的邊距處理,取決於你須要繪製的大小和各模塊之間的間距 plt.show()
線圖(2)sql
plt.figure(3) plt.rcParams['figure.figsize'] = (12,4) plt.subplot(121) def sinplot(flip=1): x=np.linspace(0,14,100) for i in range(1,7): plt.plot(x,np.sin(x+i*0.5)*(7-i)*flip) sinplot() plt.subplot(122) x = np.arange(0, 2*np.pi, 0.02) y = np.sin(x) y1 = np.sin(2*x) y2 = np.sin(3*x) ym1 = np.ma.masked_where(y1 > 0.5, y1) ym2 = np.ma.masked_where(y2 < -0.5, y2) #繪圖 lines = plt.plot(x, y, x, ym1, x, ym2, 'o') #設置線的屬性 plt.setp(lines[0], linewidth=1) plt.setp(lines[1], linewidth=2) plt.setp(lines[2], linestyle='-',marker='^',markersize=2) #線的標籤 plt.legend(('No mask', 'Masked if > 0.5', 'Masked if < -0.5'), loc='upper right') plt.title('Masked line demo') plt.show()
條形圖+餅圖+直方圖+階梯圖windows
plt.figure(2) #數據 np.random.seed(sum(map(ord,"aesthetics"))) d1 = dict([['A',5], ['B',7], ['C',3]]) d2 = np.random.randn(1000) #條形圖 plt.subplot(221) plt.bar(d1.keys(),d1.values(),align='center') #,alpha=.7,color='g' #plt.bar(range(3),d1.values(),align='center') #plt.xticks(range(3),xticks) plt.ylabel("Frequency") plt.title("Numbers of Books Students Read") #餅圖 plt.subplot(222) plt.pie(d1.values(),labels=d1.keys(),autopct='%1.1f%%') plt.title("Number of Books Students Read") #直方圖 plt.subplot(223) plt.hist(d2,100) plt.xlabel('Heights') plt.ylabel('Frequency') plt.title('Height of Students') #階梯曲線/累積分佈曲線 plt.subplot(224) plt.hist(d2,20,normed=True,histtype='step',cumulative=True) plt.xlabel('Heights') plt.ylabel('Frequency') plt.title('Heights of Students') plt.subplots_adjust(left=0.08,right=0.95,wspace=0.25,hspace=0.45) #圖間距 plt.show()
餅圖+箱線圖echarts
plt.figure(2) plt.subplot(121) #fig, ax animals = dict([['frogs',15], ['hogs',20], ['dogs',45],['cats',10]]) colors = 'yellowgreen','gold','lightskyblue','lightcoral' explode = 0,0.1,0,0 plt.pie(animals.values(), explode=explode, labels=animals.keys(), colors=colors, autopct='%1.1f%%', shadow=True, startangle=50) #ax.pie #ax.set(aspect="equal", title='Pie plot with animals') plt.axis('equal') plt.subplot(122) plt.boxplot(animals.values(),labels=['animals']) #plt.boxplot((x,y,z),labels=('x','y','z')) #水平vert=False,whis=1.5 #df.boxplot() plt.title('Heights of Students') plt.show()
plt.figure(figsize=(12,4), facecolor="white") #數據 labels=np.array(['綜合', '第一週','第二週','第三週', '第四周', '第五週']) #標籤 nAttr = 6 #數據點個數 values = np.array([88.7, 85, 90, 95, 70, 96]) #原始數據 angles = np.linspace(0,2*np.pi, nAttr, endpoint=False) #弧度 #首尾相連 values = np.concatenate((values,[values[0]])) angles = np.concatenate((angles,[angles[0]])) #繪圖 plt.subplot(121, polar=True) #極座標系 plt.plot(angles, values, 'bo-', color='g', linewidth=2) #線 plt.fill(angles, values, facecolor='g', alpha=0.2) #區域 plt.thetagrids(angles*180/np.pi, labels) #標籤 #plt.figtext(0.52, 0.95, 'python成績分析圖', ha='center') #標題 plt.title('python成績分析圖') plt.grid(True) #plt.savefig('dota_radar.JPG') plt.subplot(122) #fig, ax = plt.subplots() vals1 = [1, 2, 3, 4] vals2 = [2, 3, 4, 5] vals3=[1] labels = 'A', 'B', 'C', 'D' plt.pie(vals1, radius=1.2, autopct='%1.1f%%', pctdistance=0.9) plt.pie(vals2, radius=1, autopct='%1.1f%%', pctdistance=0.75) plt.pie(vals3, radius=0.6, colors='w') #ax.set(aspect="equal", title='Pie plot with `ax.pie`') plt.title('Pie plot with xx') plt.legend(labels, loc='best') #bbox_to_anchor=(1, 1), loc='best', borderaxespad=0. plt.show()
散點圖+直方圖編輯器
plt.figure(figsize=(12,4)) #散點圖 plt.subplot(121) import matplotlib.cm as cm def scatter_plot_by_category(feat, x, y): gs = df.groupby(feat) cs = cm.rainbow(np.linspace(0, 1, len(gs))) for g, c in zip(gs, cs): plt.scatter(g[1][x], g[1][y], color=c, alpha=0.5) scatter_plot_by_category('target', 'sepal length (cm)', 'sepal width (cm)') plt.xlabel('sepal length (cm)') plt.ylabel('sepal width (cm)') plt.title('target') #直方圖 plt.subplot(122) mu, sigma = 100, 15 x = mu + sigma * np.random.randn(10000) x1 = np.linspace(x.min(), x.max(), 1000) normal = mlab.normpdf(x1, mu, sigma) #生成正態曲線的數據 kde = mlab.GaussianKDE(x) #生成核密度曲線的數據 #color='steelblue' #bins=np.arange(x.min(),x.max(), 5) #normed=True, #頻率直方圖 #cumulative=True, #積累直方圖 n, bins, patches = plt.hist(x, bins=50, density=1, edgecolor ='k', facecolor='g', alpha=0.75) #邊界色 + 填充色 line1, = plt.plot(x1, normal, 'r-', linewidth = 2) line2, = plt.plot(x1, kde(x1), 'g-', linewidth = 2) plt.legend([line1, line2],[ '正態曲線', '核密度曲線'],loc= 'best') plt.tick_params(top= 'off', right= 'off') #去除邊界刻度 plt.axvline(90) #參考線 plt.text(60, .025, r'$\mu=100,\ \sigma=15$') #文本 plt.axis([40, 160, 0, 0.03]) #刻度區間 plt.grid(ls='--') plt.xlabel('Smarts') plt.ylabel('Probability') plt.title('Histogram of IQ') plt.show()
seaborn.barplot繪製柱狀圖 更多:Seaborn常見繪圖總結ide
import numpy as np import seaborn as sns import matplotlib.pyplot as plt plt.figure(figsize=(12,4)) plt.subplot(121) a=np.arange(40).reshape(10,4) df=pd.DataFrame(a,columns=['a','b','c','d']) df['a']=[0,4,4,8,8,8,4,12,12,12] df['d']=list('aabbabbbab') sns.barplot(x='a', y='b', data=df, hue='d') #分類柱狀圖 plt.subplot(122) plt.bar(df['a'], df['b'], label='b') #barh(x,y) plt.bar(df['a'], df['c'], bottom=df['b'], color='r', label='c') plt.legend(loc=2) plt.show()
並列柱狀圖
bar_width = 0.3 x = np.arange(3) tick_label = ['一級醫院','二級醫院','三級醫院'] plt.figure(figsize=(12,4)) plt.subplot(121) #data1.groupby('醫院等級').sum()[['醫院數','本地定點醫院數']].plot(kind="bar",width = .8) #.unstack() #data1[['醫院數','本地定點醫院數']].plot(kind="bar",width = .8) plt.bar(x, data1['醫院數'], width=bar_width, align="center", color="c", label="所有醫院", alpha=0.5) plt.bar(x+bar_width, data1['本地定點醫院數'], width=bar_width, align="center", color="b", label="本地定點醫院", alpha=0.5) plt.xticks(x+bar_width/2, tick_label) plt.legend() plt.title('舟山市居民就醫醫院的等級分佈') #plt.title('醫院數分佈') plt.subplot(122) plt.bar(x, data1['總單號數'], width=bar_width, align="center", color="c", label="所有醫院", alpha=0.5) plt.bar(x+bar_width, data1['本地定點醫院單號量'], width=bar_width, align="center", color="b", label="本地定點醫院", alpha=0.5) plt.xticks(x+bar_width/2, tick_label) plt.legend() plt.title('舟山市居民在各等級醫院就醫的單號量分佈') plt.show()
堆積圖
total = df.sum(axis=1) for i in df.columns: df[i] = df[i] / total bottom = 0 for i in range(df.shape[1]): y = df.iloc[:n,i] plt.bar(x, y, bottom=bottom) bottom += y plt.legend(['一級醫院','二級醫院','三級醫院']) plt.title('100種常見病在不一樣醫院等級下的單號量分佈圖')
柱狀折線圖 / 雙軸圖(增速要乘100的哦)
df = pd.DataFrame({'x':list('abcd'), 'y':[20, 15, 10, 8], 'r':[0.3, 0.5, 0.4, 0.1]}) #plt.rcParams['figure.figsize'] = (12.0,5.0) fig = plt.figure(figsize=(8,4)) #畫柱子 ax1 = fig.add_subplot(111) ax1.bar(df['x'], df['y'], alpha=.7, color='g') ax1.set_ylabel('xx收入', fontsize=12) plt.xticks(range(df.shape[0]), df['x']) plt.xticks(fontsize=10) #後面設置不了 plt.yticks(fontsize=10) #畫折線圖 ax2 = ax1.twinx() ax2.plot(df['x'], df['r'], 'r', marker='*', ms=10) ax2.set_ylim([0,0.6]) ax2.set_ylabel('同比增速(%)', fontsize=12) plt.yticks(fontsize=10) #ax1.set_xticklabels('defg', rotation=-45) #旋轉效果 plt.title('近年xx公司xx收入與同比增速', fontsize=16) plt.grid(False) #添加數據標籤 for i in range(df.shape[0]): #plt.text(i, df['y'][i]+0.3, str(df['y'][i]), ha='center', va='bottom', fontsize=15, rotation=0) plt.text(i, df['r'][i], str(df['r'][i]), ha='center', va='bottom', fontsize=12, rotation=0) #保存與展現 #dpi爲圖像分辨率, bbox_inches='tight'表明去除空白 #plt.savefig('e:/tj/month/fx1806/公司保費增速與同比.png', dpi=600, bbox_inches='tight') plt.show()
柱狀折線圖 -- 合併label
fig = plt.figure(figsize=(10, 4)) ax1 = fig.add_subplot(111) lns1 = ax1.bar(range(ind.sum()), data.loc[ind,'單號數'], alpha=.7, color='b', label=r'單號數') ax2 = ax1.twinx() lns2 = ax2.plot(range(ind.sum()), data.loc[ind,'用藥(包含檢查等)種類數'], color='r', marker='*', ms=4, linewidth=1, label=r'用藥(包含檢查等)種類數') lns = [lns1]+lns2 labs = [l.get_label() for l in lns] ax1.legend(lns, labs, loc=0) plt.show()
其餘條形圖
plt.figure(figsize=(10, 3)) #重疊條形圖 plt.subplot(121) data_hour2015 = pd.DataFrame(np.random.randint(10, size=(100,)), columns=['num']) data_hour2016 = pd.DataFrame(np.random.randint(10, size=(100,)), columns=['num']) data_hour2017 = pd.DataFrame(-np.random.randint(10, size=(100,)), columns=['num']) data_hour2015['num'].plot.bar(color='g', alpha=0.6, label='2015年') data_hour2016['num'].plot.bar(color='r', alpha=0.6, label='2016年') data_hour2017['num'].plot.bar(color='b', alpha=0.6, label='2017年') #plt.ylabel('counts') #plt.title('missing') plt.legend(loc='upper right') plt.xticks([0,19,39,59,79,99], [1,20,40,60,80,100]) #二維頻數分佈圖 plt.subplot(122) x = np.random.randn(1000)+2 y = np.random.randn(1000)+3 plt.hist2d(x,y,bins=40) plt.show()
自定義圖例 參考
注意:數據點過多會致使部分bar顯示不全的狀況
import matplotlib.pyplot as plt import matplotlib.patches as mpatches colors = ['red', 'green', 'blue'] labels = ['一級醫院', '二級醫院', '三級醫院'] c_map = data['hirate'].map(lambda x:colors[int(x)-1]).tolist() plt.figure(figsize=(8,4)) plt.bar(range(len(data['hicode'])), data['counts'], color=c_map) #width=0.5 #plt.ylim(-0.01, 5000000) # 自定義刻度 plt.xticks(ticks=np.arange(7)*100, labels=data['hicode'][np.arange(7)*100]) # 自定義圖例 patches = [mpatches.Patch(color=colors[i], label="{:s}".format(labels[i])) for i in range(len(colors)) ] ax = plt.gca() #box = ax.get_position() #ax.set_position([box.x0, box.y0, box.width , box.height* 0.8]) ax.legend(handles=patches, loc=0) #bbox_to_anchor=(0.95,1.12)設定位置, ncol=1列數 plt.title('醫院編碼 - 接診單號量分佈圖') plt.show()
並列條形圖 -- 參考連接
df.groupby(['Region','Tier'],sort=True).sum()[['Sales2015','Sales2016']].unstack().plot(kind="bar",width = .8)
DataFrame數據繪圖
#柱狀圖 speed = [0.1, 17.5, 40, 48, 52, 69, 88] lifespan = [2, 8, 70, 1.5, 25, 12, 28] index = ['snail', 'pig', 'elephant','rabbit', 'giraffe', 'coyote', 'horse'] df = pd.DataFrame({'speed': speed, 'lifespan': lifespan}, index=index) ax = df.plot.barh(x='lifespan') #df.plot.bar() #直方圖 df = pd.DataFrame(np.random.randint(1, 7, 6000), columns = ['one']) df['two'] = df['one'] + np.random.randint(1, 7, 6000) ax = df.plot.hist(bins=12, alpha=0.5) #箱線圖 data = np.random.randn(25, 4) df = pd.DataFrame(data, columns=list('ABCD')) ax = df.plot.box() #六邊形熱力圖 n = 10000 df = pd.DataFrame({'x': np.random.randn(n), 'y': np.random.randn(n)}) ax = df.plot.hexbin(x='x', y='y', gridsize=20) n = 500 df = pd.DataFrame({'coord_x': np.random.uniform(-3, 3, size=n), 'coord_y': np.random.uniform(30, 50, size=n), 'observations': np.random.randint(1,5, size=n)}) ax = df.plot.hexbin(x='coord_x', y='coord_y', C='observations', reduce_C_function=np.sum, gridsize=10, cmap="viridis") #核密度 df = pd.DataFrame({'x': [1, 2, 2.5, 3, 3.5, 4, 5], 'y': [4, 4, 4.5, 5, 5.5, 6, 6],}) ax = df.plot.kde() ax = df.plot.kde(bw_method=0.3) ax = df.plot.kde(bw_method=3) ax = df.plot.kde(ind=[1, 2, 3, 4, 5, 6]) #線圖 df = pd.DataFrame({'pig': [20, 18, 489, 675, 1776], 'horse': [4, 25, 281, 600, 1900]}, index=[1990, 1997, 2003, 2009, 2014]) lines = df.plot.line() axes = df.plot.line(subplots=True) lines = df.plot.line(x='pig', y='horse') #餅圖 df = pd.DataFrame({'mass': [0.330, 4.87 , 5.97], 'radius': [2439.7, 6051.8, 6378.1]}, index=['Mercury', 'Venus', 'Earth']) ax = df.plot.pie(y='mass', subplots=True, figsize=(6, 3)) ax = df.plot.pie(y='radius', subplots=True, figsize=(6, 3)) #散點圖 df = pd.DataFrame([[5.1, 3.5, 0], [4.9, 3.0, 0], [7.0, 3.2, 1], [6.4, 3.2, 1], [5.9, 3.0, 2]], columns=['length', 'width', 'species']) ax1 = df.plot.scatter(x='length', y='width', c='DarkBlue') ax2 = df.plot.scatter(x='length', y='width', c='species', colormap='viridis')
矩陣圖
import pandas as pd x = pd.DataFrame(np.random.randn(200,4)*100, columns = ['A','B','C','D']) cs = np.random.randint(3, size=200) #c='k',cmap=mglearn.cm3 pd.scatter_matrix(x, figsize=(8,8), c = cs, marker = '+', diagonal='hist', hist_kwds={'bins':10, 'edgecolor':'k'}, alpha = 0.8, range_padding=0.1) plt.show()
熱力圖
#corr = df.corr() flights = sns.load_dataset("flights") flights = flights.pivot("month", "year", "passengers") fig, ax = plt.subplots(figsize = (6, 4.5)) sns.heatmap(flights, annot=True,fmt="d",linewidths=.5, ax = ax) #cmap='RdBu' plt.show()
violinplot圖
from sklearn.datasets import load_iris iris = load_iris() df = pd.DataFrame(iris['data'], columns=iris['feature_names']) df['target'] = iris['target']
plt.figure(figsize=(9, 8)) for column_index, column in enumerate(df.columns): if column == 'target': continue plt.subplot(2, 2, column_index + 1) sns.violinplot(x='target', y=column, data=df)
數學教科書上展現的圖
plt.figure(1) x = np.linspace(-np.pi,np.pi,256,endpoint=True) co, si = np.cos(x), np.sin(x) plt.plot(x, co, color="blue", linewidth=1.0, linestyle="-", label="cos", alpha=0.5) plt.plot(x, si, "r*", markersize=1, label="sin") #建立一個座標軸的編輯器 ax=plt.gca() #隱藏右邊和上邊的軸線,將左邊和下邊的軸線移到中間(數據域),把刻度數據放到下邊和左邊 ax.spines['right'].set_color("none") ax.spines['top'].set_color("none") ax.spines['left'].set_position(("data",0)) ax.spines['bottom'].set_position(("data",0)) ax.xaxis.set_ticks_position("bottom") ax.yaxis.set_ticks_position("left") #設置刻度及刻度標籤格式 plt.xticks([-np.pi,-np.pi/2,0,np.pi/2,np.pi], [r'$-\pi$',r'$-\pi/2$',r'$0$',r'$\pi/2$',r'$\pi$']) plt.yticks(np.linspace(-1,1,5, endpoint=True)) for label in ax.get_xticklabels()+ax.get_yticklabels(): label.set_fontsize(10) #字體 label.set_bbox(dict(facecolor="white", edgecolor="None", alpha=0.2)) #色彩填充 plt.fill_between(x, np.abs(x)<0.5, co, co>0.5, color="red", alpha=0.2) #添加註釋 ''' xy爲標註值,xycoords="data"表示使用原始座標 xytext:文本位置,textcoords設置其座標規範(座標偏移) arrowprops設置箭頭屬性(參數類型爲字典), arrowstyle爲箭頭風格, connectionstyle爲鏈接風格 ''' t = 1 plt.plot([t,t], [0,np.cos(t)], 'y', color ='yellow', linewidth=2, linestyle="--") plt.scatter([t,t], [0,np.cos(t)], 50, color ='red') plt.annotate("cos(1)", xy=(t, np.cos(t)), xycoords="data", xytext=(+10, +20), textcoords="offset points", fontsize=12, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) t = 2*np.pi/3 plt.plot([t,t], [0,np.sin(t)], 'y', color ='yellow', linewidth=2, linestyle="--") plt.scatter([t,t],[0,np.sin(t)], 50, color ='green') plt.annotate(r'$\sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$', xy=(t,np.sin(t)), xycoords='data', xytext=(+10, +30), textcoords='offset points', fontsize=12, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plt.title("cos&sin") plt.legend(loc="upper left") plt.grid(ls='--') plt.axis([-3.15,3.15,-1.05,1.05]) plt.show()
插值圖
import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.interpolate import griddata def func(x, y): return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2 points = np.random.rand(1000, 2) values = func(points[:,0], points[:,1]) grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j] grid_z0 = griddata(points, values, (grid_x, grid_y), method='nearest') grid_z1 = griddata(points, values, (grid_x, grid_y), method='linear') grid_z2 = griddata(points, values, (grid_x, grid_y), method='cubic') plt.subplot(221) plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower') plt.plot(points[:,0], points[:,1], 'k.', ms=1) plt.title('Original') plt.subplot(222) plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower') plt.title('Nearest') plt.subplot(223) plt.imshow(grid_z1.T, extent=(0,1,0,1), origin='lower') plt.title('Linear') plt.subplot(224) plt.imshow(grid_z2.T, extent=(0,1,0,1), origin='lower') plt.title('Cubic') plt.gcf().set_size_inches(6, 6) plt.show()
等高線圖
import numpy as np import matplotlib.pyplot as plt #import matplotlib as mpl #from matplotlib import colors #創建步長爲0.01,即每隔0.01取一個點 step = 0.01 x = np.arange(-10,10,step) y = np.arange(-10,10,step) #也能夠用x = np.linspace(-10,10,100)表示從-10到10,分100份 #將原始數據變成網格數據形式 X,Y = np.meshgrid(x,y) Z = X**2+Y**2 #等高線圖 plt.figure(figsize=(10,6)) #設置畫布大小 plt.subplot(231) plt.contour(X,Y,Z) #等高線 plt.subplot(232) contour = plt.contour(X,Y,Z, [20,40,60], colors='k') #只畫z=20和40的線,黑色 plt.clabel(contour, fontsize=10, colors=('k','r','b'), fmt='%.4f') #標註高度(字體,顏色,小數) plt.subplot(233) contour = plt.contour(X,Y,Z, 4, colors='k') #只畫z=20和40的線,黑色 plt.clabel(contour, fontsize=10, colors='b', fmt='%.2f') #標註高度(字體,顏色,小數) plt.subplot(234) plt.contourf(X,Y,Z) #填充顏色,f即filled plt.xticks(()) #去掉刻度 plt.yticks(()) plt.subplot(235) cset = plt.contourf(X,Y,Z,6,cmap=plt.cm.hot) plt.colorbar(cset) plt.subplot(236) cset = plt.contourf(X,Y,Z,6,alpha=1,vmin=0,vmax=100, cmap='hot_r') #6種顏色, 顏色取反 plt.colorbar(cset) contour = plt.contour(X,Y,Z,8,colors='k') #8條線 plt.clabel(contour,fontsize=10,colors='k') plt.scatter(0,0,color='r') plt.show() #colorslist = ['w','gainsboro','gray','aqua'] #將顏色條命名爲mylist,一共插值顏色條50個 #cmaps = colors.LinearSegmentedColormap.from_list('mylist',colorslist,N=200) #cmap='hot' 'BuGn', plt.get_cmap('YlOrBr_r'), mpl.cm.hot
聚類結果的可視化(1)
from itertools import cycle import matplotlib.pyplot as plt plt.close('all') plt.figure(figsize=(12,4)) plt.clf() unique_labels = set(db.labels_) core_samples_mask = np.zeros_like(db.labels_, dtype=bool) # 設置一個樣本個數長度的全false向量 core_samples_mask[db.core_sample_indices_] = True #將核心樣本部分設置爲true # 使用黑色標註離散點 plt.subplot(121) colors = [plt.cm.Spectral(each) for each in np.linspace(0, 1, len(unique_labels))] for k, col in zip(unique_labels, colors): if k == -1: # 聚類結果爲-1的樣本爲離散點 # 使用黑色繪製離散點 col = [0, 0, 0, 1] class_member_mask = (db.labels_ == k) # 將全部屬於該聚類的樣本位置置爲true xy = X[class_member_mask & core_samples_mask] # 將全部屬於該類的核心樣本取出,使用大圖標繪製 plt.plot(xy[:, 0], xy[:, 2], 'o', markerfacecolor=tuple(col),markeredgecolor='k', markersize=14) xy = X[class_member_mask & ~core_samples_mask] # 將全部屬於該類的非核心樣本取出,使用小圖標繪製 plt.plot(xy[:, 0], xy[:, 2], 'o', markerfacecolor=tuple(col),markeredgecolor='k', markersize=6) plt.title('對醫院醫療耗材的異常值檢測最佳聚類數: %d' % n_clusters_) plt.xlabel(r'CQ類材料使用頻率(%)') plt.ylabel(r'單價200元以上CL類使用頻率(%)') #plt.show() plt.subplot(122) colors = cycle('bgrcmybgrcmybgrcmybgrcmy') for k, col in zip(unique_labels, colors): class_member_mask = db.labels_ == k if k == -1: plt.plot(X[class_member_mask, 0], X[class_member_mask, 2], 'k' + '.') else: cluster_center = X[class_member_mask & core_samples_mask].mean(axis=0) plt.plot(X[class_member_mask, 0], X[class_member_mask, 2], col + '.') plt.plot(cluster_center[0], cluster_center[2], 'o', markerfacecolor=col, markeredgecolor='k', markersize=14) for x in X[class_member_mask]: plt.plot([cluster_center[0], x[0]], [cluster_center[2], x[2]], col) plt.title('Estimated number of clusters: %d' % n_clusters_) plt.xlabel(r'CQ類材料使用頻率(%)') plt.ylabel(r'單價200元以上CL類使用頻率(%)') plt.show()
聚類結果的可視化(2)
print(__doc__) from time import time import numpy as np import matplotlib.pyplot as plt from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(82 * '_') print('init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('%-9s\t%.2fs\t%i\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f\t%.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_, average_method='arithmetic'), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(82 * '_') # ############################################################################# # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, x_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1 y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure(1) plt.clf() plt.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=plt.cm.Paired, aspect='auto', origin='lower') plt.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) plt.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.xticks(()) plt.yticks(()) plt.show()
決策樹可視化
1. 安裝繪圖軟件GraphViz(graphviz-2.38.zip 下載),並將解壓路徑添加到環境變量(經過個人電腦改環境變量貌似不行)
# 添加環境變量 import os os.environ["PATH"] += os.pathsep + 'D:/graphviz-2.38/release/bin/' # 安裝相關包 pip install graphviz pydotplus
2. 繪製決策樹
#import io #import graphviz import pydotplus from sklearn.datasets import load_iris from sklearn import tree from IPython.display import Image iris = load_iris() clf = tree.DecisionTreeClassifier() clf = clf.fit(iris.data, iris.target) #tree.plot_tree(clf.fit(iris.data, iris.target)) #dot_data = tree.export_graphviz(clf, out_file=None) #黑白 dot_data = tree.export_graphviz(clf, out_file=None, feature_names=iris.feature_names, class_names=iris.target_names, filled=True, rounded=True, special_characters=True) #dot_data = io.StringIO() #tree.export_graphviz(clf, out_file=dot_data) #graph = graphviz.Source(dot_data) #graph.render("iris") #導出爲iris.pdf #graph graph = pydotplus.graphviz.graph_from_dot_data(dot_data) Image(graph.create_png()) # --------------------------------------------------- #from numpy import loadtxt from sklearn.datasets import load_iris from xgboost import XGBClassifier from xgboost import plot_tree import matplotlib.pyplot as plt # load data #iris = loadtxt('pima-indians-diabetes.csv', delimiter=",") iris = load_iris() # split data into X and y X = iris.data y = iris.target # fit model no training data model = XGBClassifier() model.fit(X, y) # plot single tree fig = plt.figure(dpi=180) ax = plt.subplot(1,1,1) plot_tree(model, num_trees=4, ax = ax) plt.show()
參考資料:
python matplotlib contour畫等高線圖
https://scikit-learn.org/stable/auto_examples/index.html 好多炫酷炸天的圖
詳解pandas.DataFrame.plot( )畫圖函數
Python模塊--PyEcharts 多種好看的圖, pyecharts官方文檔
python matplotlib quiver——畫箭頭、風場
python數據可視化seaborn(一)—— 總體樣式與調色板
參考資料: