Mask-RCNN,是一個處於像素級別的目標檢測手段.目標檢測的發展主要歷程大概是:RCNN,Fast-RCNN,Fster-RCNN,Darknet,YOLO,YOLOv2,YOLO3(參考目標檢測:keras-yolo3之製做VOC數據集訓練指南),Mask-RCNN.本文參考的論文來源於https://arxiv.org/abs/1703.06870.html
下面,開始製做用於Mask訓練的數據集。python
首先展現一下成果,因爲我的設備有限,cpu僅迭代5次的結果。linux
**標註以前將圖片的名字經過linux或者python腳本更名,改成有序便可,個人命名格式爲升序,下面爲linux腳本。git
i=1; for x in *; do mv $x $i.png; let i=i+1; done
**將全部圖片的尺寸改成600*800.(通常設置爲2的整數次冪,不然,後序訓練時會報錯).腳本自取https://github.com/hyhouyong/Mask-RCNN/blob/master/train_data/resize.pygithub
pip install labelme labelme
1.新建文件夾train_data,並建立子文件夾json,將標註後的json格式的文件放入該文件夾中json
2.當你安裝lableme的時候,默認安裝到了Anaconda目錄下/envs/名字/Scripts/下,使用labelme_json_to_dataset.exe將json文件轉化爲5個文件app
轉化方法,切換到labelme安裝目錄下,執行:post
labelme_json_to_dataset.exe [文件名]
注意:文件名爲絕對路徑 . eg:(chineseocr) D:\anaconda\envs\chineseocr\Scripts>labelme_json_to_dataset.exe F:\samples\shapes\train_data\json\1.json測試
***這樣只能一次轉化一個json文件,故開始批量轉。ui
切換到D:\anaconda\envs\py3.6\Lib\site-packages\labelme\cli下,修改json_to_dataset.py,而後切換到Scripts,執行命令:
labelme_json_to_dataset.exe [存放json文件夾的絕對路徑]
***生成的json文件夾會在當前目錄,將文件夾拷貝到train_data下的labelme_json文件夾中
import argparse import json import os import os.path as osp import warnings import PIL.Image import yaml from labelme import utils import base64 def main(): warnings.warn("This script is aimed to demonstrate how to convert the\n" "JSON file to a single image dataset, and not to handle\n" "multiple JSON files to generate a real-use dataset.") parser = argparse.ArgumentParser() parser.add_argument('json_file') parser.add_argument('-o', '--out', default=None) args = parser.parse_args() json_file = args.json_file if args.out is None: out_dir = osp.basename(json_file).replace('.', '_') out_dir = osp.join(osp.dirname(json_file), out_dir) else: out_dir = args.out if not osp.exists(out_dir): os.mkdir(out_dir) count = os.listdir(json_file) for i in range(0, len(count)): path = os.path.join(json_file, count[i]) if os.path.isfile(path): data = json.load(open(path)) if data['imageData']: imageData = data['imageData'] else: imagePath = os.path.join(os.path.dirname(path), data['imagePath']) with open(imagePath, 'rb') as f: imageData = f.read() imageData = base64.b64encode(imageData).decode('utf-8') img = utils.img_b64_to_arr(imageData) label_name_to_value = {'_background_': 0} for shape in data['shapes']: label_name = shape['label'] if label_name in label_name_to_value: label_value = label_name_to_value[label_name] else: label_value = len(label_name_to_value) label_name_to_value[label_name] = label_value # label_values must be dense label_values, label_names = [], [] for ln, lv in sorted(label_name_to_value.items(), key=lambda x: x[1]): label_values.append(lv) label_names.append(ln) assert label_values == list(range(len(label_values))) lbl = utils.shapes_to_label(img.shape, data['shapes'], label_name_to_value) captions = ['{}: {}'.format(lv, ln) for ln, lv in label_name_to_value.items()] lbl_viz = utils.draw_label(lbl, img, captions) out_dir = osp.basename(count[i]).replace('.', '_') out_dir = osp.join(osp.dirname(count[i]), out_dir) if not osp.exists(out_dir): os.mkdir(out_dir) PIL.Image.fromarray(img).save(osp.join(out_dir, 'img.png')) #PIL.Image.fromarray(lbl).save(osp.join(out_dir, 'label.png')) utils.lblsave(osp.join(out_dir, 'label.png'), lbl) PIL.Image.fromarray(lbl_viz).save(osp.join(out_dir, 'label_viz.png')) with open(osp.join(out_dir, 'label_names.txt'), 'w') as f: for lbl_name in label_names: f.write(lbl_name + '\n') warnings.warn('info.yaml is being replaced by label_names.txt') info = dict(label_names=label_names) with open(osp.join(out_dir, 'info.yaml'), 'w') as f: yaml.safe_dump(info, f, default_flow_style=False) print('Saved to: %s' % out_dir) if __name__ == '__main__': main()
3.生成Mask文件,因爲labelme生成的掩碼標籤 label.png爲16位存儲,opencv默認讀取8位,須要將16位轉8位
腳本自取https://github.com/hyhouyong/Mask-RCNN/blob/master/train_data/uint16_to_uint8.py,
4.最後生成的文件夾結構以下:
1.安裝環境
pip install -r requirements.txt
2.下載預訓練模型mask_rcnn_coco.h5
百度雲連接:https://pan.baidu.com/s/1CmcfVleyw7QpVZRo3JxS2w 提取碼:tf7f
3.執行命令:
python train_shape.py
1.將想要測試的圖片放入imges文件夾中
2.執行命令:
python test_shape.py
詳細代碼見:個人github自取。歡迎Fork和Star並交流