ZooKeeper是一個分佈式的,開放源碼的分佈式應用程序協調服務,是Google的Chubby一個開源的實現,是Hadoop和Hbase的重要組件。它是一個爲分佈式應用提供一致性服務的軟件,提供的功能包括:配置維護、域名服務、分佈式同步、組服務等。java
ZooKeeper的架構經過冗餘服務實現高可用性。所以,若是第一次無應答,客戶端就能夠詢問另外一臺ZooKeeper主機。ZooKeeper節點將它們的數據存儲於一個分層的命名空間,很是相似於一個文件系統或一個前綴樹結構。客戶端能夠在節點讀寫,從而以這種方式擁有一個共享的配置服務。更新是全序的。node
下面就具體使用java和zookeeper實現分佈式鎖,操做zookeeper使用的是apache提供的zookeeper的包。apache
分佈式鎖session
import org.apache.zookeeper.*; import org.apache.zookeeper.data.Stat; import java.io.IOException; import java.util.ArrayList; import java.util.Collections; import java.util.List; import java.util.concurrent.CountDownLatch; import java.util.concurrent.TimeUnit; import java.util.concurrent.locks.Condition; import java.util.concurrent.locks.Lock; /** * Created by liuyang on 2017/4/20. */ public class DistributedLock implements Lock, Watcher { private ZooKeeper zk = null; // 根節點 private String ROOT_LOCK = "/locks"; // 競爭的資源 private String lockName; // 等待的前一個鎖 private String WAIT_LOCK; // 當前鎖 private String CURRENT_LOCK; // 計數器 private CountDownLatch countDownLatch; private int sessionTimeout = 30000; private List<Exception> exceptionList = new ArrayList<Exception>(); /** * 配置分佈式鎖 * @param config 鏈接的url * @param lockName 競爭資源 */ public DistributedLock(String config, String lockName) { this.lockName = lockName; try { // 鏈接zookeeper zk = new ZooKeeper(config, sessionTimeout, this); Stat stat = zk.exists(ROOT_LOCK, false); if (stat == null) { // 若是根節點不存在,則建立根節點 zk.create(ROOT_LOCK, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT); } } catch (IOException e) { e.printStackTrace(); } catch (InterruptedException e) { e.printStackTrace(); } catch (KeeperException e) { e.printStackTrace(); } } // 節點監視器 public void process(WatchedEvent event) { if (this.countDownLatch != null) { this.countDownLatch.countDown(); } } public void lock() { if (exceptionList.size() > 0) { throw new LockException(exceptionList.get(0)); } try { if (this.tryLock()) { System.out.println(Thread.currentThread().getName() + " " + lockName + "得到了鎖"); return; } else { // 等待鎖 waitForLock(WAIT_LOCK, sessionTimeout); } } catch (InterruptedException e) { e.printStackTrace(); } catch (KeeperException e) { e.printStackTrace(); } } public boolean tryLock() { try { String splitStr = "_lock_"; if (lockName.contains(splitStr)) { throw new LockException("鎖名有誤"); } // 建立臨時有序節點 CURRENT_LOCK = zk.create(ROOT_LOCK + "/" + lockName + splitStr, new byte[0], ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL); System.out.println(CURRENT_LOCK + " 已經建立"); // 取全部子節點 List<String> subNodes = zk.getChildren(ROOT_LOCK, false); // 取出全部lockName的鎖 List<String> lockObjects = new ArrayList<String>(); for (String node : subNodes) { String _node = node.split(splitStr)[0]; if (_node.equals(lockName)) { lockObjects.add(node); } } Collections.sort(lockObjects); System.out.println(Thread.currentThread().getName() + " 的鎖是 " + CURRENT_LOCK); // 若當前節點爲最小節點,則獲取鎖成功 if (CURRENT_LOCK.equals(ROOT_LOCK + "/" + lockObjects.get(0))) { return true; } // 若不是最小節點,則找到本身的前一個節點 String prevNode = CURRENT_LOCK.substring(CURRENT_LOCK.lastIndexOf("/") + 1); WAIT_LOCK = lockObjects.get(Collections.binarySearch(lockObjects, prevNode) - 1); } catch (InterruptedException e) { e.printStackTrace(); } catch (KeeperException e) { e.printStackTrace(); } return false; } public boolean tryLock(long timeout, TimeUnit unit) { try { if (this.tryLock()) { return true; } return waitForLock(WAIT_LOCK, timeout); } catch (Exception e) { e.printStackTrace(); } return false; } // 等待鎖 private boolean waitForLock(String prev, long waitTime) throws KeeperException, InterruptedException { Stat stat = zk.exists(ROOT_LOCK + "/" + prev, true); if (stat != null) { System.out.println(Thread.currentThread().getName() + "等待鎖 " + ROOT_LOCK + "/" + prev); this.countDownLatch = new CountDownLatch(1); // 計數等待,若等到前一個節點消失,則precess中進行countDown,中止等待,獲取鎖 this.countDownLatch.await(waitTime, TimeUnit.MILLISECONDS); this.countDownLatch = null; System.out.println(Thread.currentThread().getName() + " 等到了鎖"); } return true; } public void unlock() { try { System.out.println("釋放鎖 " + CURRENT_LOCK); zk.delete(CURRENT_LOCK, -1); CURRENT_LOCK = null; zk.close(); } catch (InterruptedException e) { e.printStackTrace(); } catch (KeeperException e) { e.printStackTrace(); } } public Condition newCondition() { return null; } public void lockInterruptibly() throws InterruptedException { this.lock(); } public class LockException extends RuntimeException { private static final long serialVersionUID = 1L; public LockException(String e){ super(e); } public LockException(Exception e){ super(e); } } }
測試代碼架構
public class Test { static int n = 500; public static void secskill() { System.out.println(--n); } public static void main(String[] args) { Runnable runnable = new Runnable() { public void run() { DistributedLock lock = null; try { lock = new DistributedLock("127.0.0.1:2181", "test1"); lock.lock(); secskill(); System.out.println(Thread.currentThread().getName() + "正在運行"); } finally { if (lock != null) { lock.unlock(); } } } }; for (int i = 0; i < 10; i++) { Thread t = new Thread(runnable); t.start(); } } }
運行結果:
分佈式
整體來講,若是瞭解到整個實現流程,使用zookeeper實現分佈式鎖並非很困難,不過這也只是一個簡單的實現,與前面實現Redis實現相比,本實現的穩定性更強,這是由於zookeeper的特性所致,在外界看來,zookeeper集羣中每個節點都是一致的。oop