01 - 簡單線性模型python
by Magnus Erik Hvass Pedersen / GitHub / Videos on YouTube
中文翻譯 thrillerist / Github git
若有轉載,請附上本文連接。github
先前的教程展現了一個簡單的線性模型,對MNIST數據集中手寫數字的識別率達到了91%。windows
在這個教程中,咱們會在TensorFlow中實現一個簡單的卷積神經網絡,它能達到大約99%的分類準確率,若是你作了一些建議的練習,準確率還可能更高。api
卷積神經網絡在一張輸入圖片上移動一個小的濾波器。這意味着在遍歷整張圖像來識別模式時,要重複使用這些濾波器。這讓卷積神經網絡在擁有相同數量的變量時比全鏈接網絡(Fully-Connected)更強大,也讓卷積神經網絡訓練得更快。網絡
你應該熟悉基本的線性代數、Python和Jupyter Notebook編輯器。若是你是TensorFlow新手,在本教程以前應該先學習第一篇教程。session
下面的圖表直接顯示了以後實現的卷積神經網絡中數據的傳遞。編輯器
from IPython.display import Image
Image('images/02_network_flowchart.png')複製代碼
輸入圖像在第一層卷積層裏使用權重過濾器處理。結果在16張新圖裏,每張表明了卷積層裏一個過濾器(的處理結果)。圖像通過降採樣,分辨率從28x28減小到14x14。ide
16張小圖在第二個卷積層中處理。這16個通道以及這層輸出的每一個通道都須要一個過濾權重。總共有36個輸出,因此在第二個卷積層有16 x 36 = 576個濾波器。輸出圖再一次降採樣到7x7個像素。函數
第二個卷積層的輸出是36張7x7像素的圖像。它們被轉換到一個長爲7 x 7 x 36 = 1764的向量中去,它做爲一個有128個神經元(或元素)的全鏈接網絡的輸入。這些又輸入到另外一個有10個神經元的全鏈接層中,每一個神經元表明一個類別,用來肯定圖像的類別,即圖像上的數字。
卷積濾波一開始是隨機挑選的,所以分類也是隨機完成的。根據交叉熵(cross-entropy)來測量輸入圖預測值和真實類別間的錯誤。而後優化器用鏈式法則自動地將這個偏差在卷積網絡中傳遞,更新濾波權重來提高分類質量。這個過程迭代了幾千次,直到分類偏差足夠低。
這些特定的濾波權重和中間圖像是一個優化結果,和你執行代碼所看到的可能會有所不一樣。
注意,這些在TensorFlow上的計算是在一部分圖像上執行,而非單獨的一張圖,這使得計算更有效。也意味着在TensorFlow上實現時,這個流程圖實際上會有更多的數據維度。
下面的圖片展現了在第一個卷積層中處理圖像的基本思想。輸入圖片描繪了數字7,這裏顯示了它的四張拷貝,咱們能夠很清晰的看到濾波器是如何在圖像的不一樣位置移動。在濾波器的每一個位置上,計算濾波器以及濾波器下方圖像像素的點乘,獲得輸出圖像的一個像素。所以,在整張輸入圖像上移動時,會有一張新的圖像生成。
紅色的濾波權重表示濾波器對輸入圖的黑色像素有正響應,藍色的表明有負響應。
在這個例子中,很明顯這個濾波器識別數字7的水平線段,在輸出圖中能夠看到它對線段的強烈響應。
Image('images/02_convolution.png')複製代碼
濾波器遍歷輸入圖的移動步長稱爲stride。在水平和豎直方向各有一個stride。
在下面的源碼中,兩個方向的stride都設爲1,這說明濾波器從輸入圖像的左上角開始,下一步移動到右邊1個像素去。當濾波器到達圖像的右邊時,它會返回最左邊,而後向下移動1個像素。持續這個過程,直到濾波器到達輸入圖像的右下角,同時,也生成了整張輸出圖片。
當濾波器到達輸入圖的右端或底部時,它會用零(白色像素)來填充。由於輸出圖要和輸入圖同樣大。
此外,卷積層的輸出可能會傳遞給修正線性單元(ReLU),它用來保證輸出是正值,將負值置爲零。輸出還會用最大池化(max-pooling)進行降採樣,它使用了2x2的小窗口,只保留像素中的最大值。這讓輸入圖分辨率減少一半,好比從28x28到14x14。
第二個卷積層更加複雜,由於它有16個輸入通道。咱們想給每一個通道一個單獨的濾波,所以須要16個。另外,咱們想從第二個卷積層獲得36個輸出,所以總共須要16 x 36 = 576個濾波器。要理解這些如何工做可能有些困難。
%matplotlib inline
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
from sklearn.metrics import confusion_matrix
import time
from datetime import timedelta
import math複製代碼
使用Python3.5.2(Anaconda)開發,TensorFlow版本是:
tf.__version__複製代碼
'0.12.0-rc0'
方便起見,在這裏定義神經網絡的配置,你能夠很容易找到或改變這些數值,而後從新運行Notebook。
# Convolutional Layer 1.
filter_size1 = 5 # Convolution filters are 5 x 5 pixels.
num_filters1 = 16 # There are 16 of these filters.
# Convolutional Layer 2.
filter_size2 = 5 # Convolution filters are 5 x 5 pixels.
num_filters2 = 36 # There are 36 of these filters.
# Fully-connected layer.
fc_size = 128 # Number of neurons in fully-connected layer.複製代碼
MNIST數據集大約12MB,若是沒在文件夾中找到就會自動下載。
from tensorflow.examples.tutorials.mnist import input_data
data = input_data.read_data_sets('data/MNIST/', one_hot=True)複製代碼
Extracting data/MNIST/train-images-idx3-ubyte.gz
Extracting data/MNIST/train-labels-idx1-ubyte.gz
Extracting data/MNIST/t10k-images-idx3-ubyte.gz
Extracting data/MNIST/t10k-labels-idx1-ubyte.gz
如今已經載入了MNIST數據集,它由70,000張圖像和對應的標籤(好比圖像的類別)組成。數據集分紅三份互相獨立的子集。咱們在教程中只用訓練集和測試集。
print("Size of:")
print("- Training-set:\t\t{}".format(len(data.train.labels)))
print("- Test-set:\t\t{}".format(len(data.test.labels)))
print("- Validation-set:\t{}".format(len(data.validation.labels)))複製代碼
Size of:
-Training-set: 55000
-Test-set: 10000
-Validation-set: 5000
類型標籤使用One-Hot編碼,這意外每一個標籤是長爲10的向量,除了一個元素以外,其餘的都爲零。這個元素的索引就是類別的數字,即相應圖片中畫的數字。咱們也須要測試數據集類別數字的整型值,用下面的方法來計算。
data.test.cls = np.argmax(data.test.labels, axis=1)複製代碼
在下面的源碼中,有不少地方用到了數據維度。它們只在一個地方定義,所以咱們能夠在代碼中使用這些數字而不是直接寫數字。
# We know that MNIST images are 28 pixels in each dimension.
img_size = 28
# Images are stored in one-dimensional arrays of this length.
img_size_flat = img_size * img_size
# Tuple with height and width of images used to reshape arrays.
img_shape = (img_size, img_size)
# Number of colour channels for the images: 1 channel for gray-scale.
num_channels = 1
# Number of classes, one class for each of 10 digits.
num_classes = 10複製代碼
這個函數用來在3x3的柵格中畫9張圖像,而後在每張圖像下面寫出真實類別和預測類別。
def plot_images(images, cls_true, cls_pred=None):
assert len(images) == len(cls_true) == 9
# Create figure with 3x3 sub-plots.
fig, axes = plt.subplots(3, 3)
fig.subplots_adjust(hspace=0.3, wspace=0.3)
for i, ax in enumerate(axes.flat):
# Plot image.
ax.imshow(images[i].reshape(img_shape), cmap='binary')
# Show true and predicted classes.
if cls_pred is None:
xlabel = "True: {0}".format(cls_true[i])
else:
xlabel = "True: {0}, Pred: {1}".format(cls_true[i], cls_pred[i])
# Show the classes as the label on the x-axis.
ax.set_xlabel(xlabel)
# Remove ticks from the plot.
ax.set_xticks([])
ax.set_yticks([])
# Ensure the plot is shown correctly with multiple plots
# in a single Notebook cell.
plt.show()複製代碼
# Get the first images from the test-set.
images = data.test.images[0:9]
# Get the true classes for those images.
cls_true = data.test.cls[0:9]
# Plot the images and labels using our helper-function above.
plot_images(images=images, cls_true=cls_true)複製代碼
TensorFlow的所有目的就是使用一個稱之爲計算圖(computational graph)的東西,它會比直接在Python中進行相同計算量要高效得多。TensorFlow比Numpy更高效,由於TensorFlow瞭解整個須要運行的計算圖,然而Numpy只知道某個時間點上惟一的數學運算。
TensorFlow也可以自動地計算須要優化的變量的梯度,使得模型有更好的表現。這是因爲圖是簡單數學表達式的結合,所以整個圖的梯度能夠用鏈式法則推導出來。
TensorFlow還能利用多核CPU和GPU,Google也爲TensorFlow製造了稱爲TPUs(Tensor Processing Units)的特殊芯片,它比GPU更快。
一個TensorFlow圖由下面幾個部分組成,後面會詳細描述:
另外,TensorFlow圖也包含了一些調試狀態,好比用TensorBoard打印log數據,本教程不涉及這些。
函數用來根據給定大小建立TensorFlow變量,並將它們用隨機值初始化。需注意的是在此時並未完成初始化工做,僅僅是在TensorFlow圖裏定義它們。
def new_weights(shape):
return tf.Variable(tf.truncated_normal(shape, stddev=0.05))複製代碼
def new_biases(length):
return tf.Variable(tf.constant(0.05, shape=[length]))複製代碼
這個函數爲TensorFlow在計算圖裏建立了新的卷積層。這裏並無執行什麼計算,只是在TensorFlow圖裏添加了數學公式。
假設輸入的是四維的張量,各個維度以下:
輸入通道多是彩色通道,當輸入是前面的卷積層生成的時候,它也多是濾波通道。
輸出是另一個4通道的張量,以下:
def new_conv_layer(input, # The previous layer. num_input_channels, # Num. channels in prev. layer. filter_size, # Width and height of each filter. num_filters, # Number of filters. use_pooling=True): # Use 2x2 max-pooling.
# Shape of the filter-weights for the convolution.
# This format is determined by the TensorFlow API.
shape = [filter_size, filter_size, num_input_channels, num_filters]
# Create new weights aka. filters with the given shape.
weights = new_weights(shape=shape)
# Create new biases, one for each filter.
biases = new_biases(length=num_filters)
# Create the TensorFlow operation for convolution.
# Note the strides are set to 1 in all dimensions.
# The first and last stride must always be 1,
# because the first is for the image-number and
# the last is for the input-channel.
# But e.g. strides=[1, 2, 2, 1] would mean that the filter
# is moved 2 pixels across the x- and y-axis of the image.
# The padding is set to 'SAME' which means the input image
# is padded with zeroes so the size of the output is the same.
layer = tf.nn.conv2d(input=input,
filter=weights,
strides=[1, 1, 1, 1],
padding='SAME')
# Add the biases to the results of the convolution.
# A bias-value is added to each filter-channel.
layer += biases
# Use pooling to down-sample the image resolution?
if use_pooling:
# This is 2x2 max-pooling, which means that we
# consider 2x2 windows and select the largest value
# in each window. Then we move 2 pixels to the next window.
layer = tf.nn.max_pool(value=layer,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
# Rectified Linear Unit (ReLU).
# It calculates max(x, 0) for each input pixel x.
# This adds some non-linearity to the formula and allows us
# to learn more complicated functions.
layer = tf.nn.relu(layer)
# Note that ReLU is normally executed before the pooling,
# but since relu(max_pool(x)) == max_pool(relu(x)) we can
# save 75% of the relu-operations by max-pooling first.
# We return both the resulting layer and the filter-weights
# because we will plot the weights later.
return layer, weights複製代碼
卷積層生成了4維的張量。咱們會在卷積層以後添加一個全鏈接層,所以咱們須要將這個4維的張量轉換成可被全鏈接層使用的2維張量。
def flatten_layer(layer):
# Get the shape of the input layer.
layer_shape = layer.get_shape()
# The shape of the input layer is assumed to be:
# layer_shape == [num_images, img_height, img_width, num_channels]
# The number of features is: img_height * img_width * num_channels
# We can use a function from TensorFlow to calculate this.
num_features = layer_shape[1:4].num_elements()
# Reshape the layer to [num_images, num_features].
# Note that we just set the size of the second dimension
# to num_features and the size of the first dimension to -1
# which means the size in that dimension is calculated
# so the total size of the tensor is unchanged from the reshaping.
layer_flat = tf.reshape(layer, [-1, num_features])
# The shape of the flattened layer is now:
# [num_images, img_height * img_width * num_channels]
# Return both the flattened layer and the number of features.
return layer_flat, num_features複製代碼
這個函數爲TensorFlow在計算圖中建立了一個全鏈接層。這裏也不進行任何計算,只是往TensorFlow圖中添加數學公式。
輸入是大小爲[num_images, num_inputs]
的二維張量。輸出是大小爲[num_images, num_outputs]
的2維張量。
def new_fc_layer(input, # The previous layer. num_inputs, # Num. inputs from prev. layer. num_outputs, # Num. outputs. use_relu=True): # Use Rectified Linear Unit (ReLU)?
# Create new weights and biases.
weights = new_weights(shape=[num_inputs, num_outputs])
biases = new_biases(length=num_outputs)
# Calculate the layer as the matrix multiplication of
# the input and weights, and then add the bias-values.
layer = tf.matmul(input, weights) + biases
# Use ReLU?
if use_relu:
layer = tf.nn.relu(layer)
return layer複製代碼
Placeholder是做爲圖的輸入,每次咱們運行圖的時候均可能會改變它們。將這個過程稱爲feeding placeholder變量,後面將會描述它。
首先咱們爲輸入圖像定義placeholder變量。這讓咱們能夠改變輸入到TensorFlow圖中的圖像。這也是一個張量(tensor),表明一個多維向量或矩陣。數據類型設置爲float32,形狀設爲[None, img_size_flat]
,None
表明tensor可能保存着任意數量的圖像,每張圖象是一個長度爲img_size_flat
的向量。
x = tf.placeholder(tf.float32, shape=[None, img_size_flat], name='x')複製代碼
卷積層但願x
被編碼爲4維張量,所以咱們須要將它的形狀轉換至[num_images, img_height, img_width, num_channels]
。注意img_height == img_width == img_size
,若是第一維的大小設爲-1, num_images
的大小也會被自動推導出來。轉換運算以下:
x_image = tf.reshape(x, [-1, img_size, img_size, num_channels])複製代碼
接下來咱們爲輸入變量x
中的圖像所對應的真實標籤訂義placeholder變量。變量的形狀是[None, num_classes]
,這表明着它保存了任意數量的標籤,每一個標籤是長度爲num_classes
的向量,本例中長度爲10。
y_true = tf.placeholder(tf.float32, shape=[None, 10], name='y_true')複製代碼
咱們也能夠爲class-number提供一個placeholder,但這裏用argmax來計算它。這裏只是TensorFlow中的一些操做,沒有執行什麼運算。
y_true_cls = tf.argmax(y_true, dimension=1)複製代碼
建立第一個卷積層。將x_image
看成輸入,建立num_filters1
個不一樣的濾波器,每一個濾波器的寬高都與 filter_size1
相等。最終咱們會用2x2的max-pooling將圖像降採樣,使它的尺寸減半。
layer_conv1, weights_conv1 = \
new_conv_layer(input=x_image,
num_input_channels=num_channels,
filter_size=filter_size1,
num_filters=num_filters1,
use_pooling=True)複製代碼
檢查卷積層輸出張量的大小。它是(?,14, 14, 16),這表明着有任意數量的圖像(?表明數量),每張圖像有14個像素的寬和高,有16個不一樣的通道,每一個濾波器各有一個通道。
layer_conv1複製代碼
建立第二個卷積層,它將第一個卷積層的輸出做爲輸入。輸入通道的數量對應着第一個卷積層的濾波數。
layer_conv2, weights_conv2 = \
new_conv_layer(input=layer_conv1,
num_input_channels=num_filters1,
filter_size=filter_size2,
num_filters=num_filters2,
use_pooling=True)複製代碼
覈對一下這個卷積層輸出張量的大小。它的大小是(?, 7, 7, 36),其中?也表明着任意數量的圖像,每張圖有7像素的寬高,每一個濾波器有36個通道。
layer_conv2複製代碼
這個卷積層輸出一個4維張量。如今咱們想將它做爲一個全鏈接網絡的輸入,這就須要將它轉換成2維張量。
layer_flat, num_features = flatten_layer(layer_conv2)複製代碼
這個張量的大小是(?, 1764),意味着共有必定數量的圖像,每張圖像被轉換成長爲1764的向量。其中1764 = 7 x 7 x 36。
layer_flat複製代碼
num_features複製代碼
1764
往網絡中添加一個全鏈接層。輸入是一個前面卷積獲得的被轉換過的層。全鏈接層中的神經元或節點數爲fc_size
。咱們能夠用ReLU來學習非線性關係。
layer_fc1 = new_fc_layer(input=layer_flat,
num_inputs=num_features,
num_outputs=fc_size,
use_relu=True)複製代碼
全鏈接層的輸出是一個大小爲(?,128)的張量,?表明着必定數量的圖像,而且fc_size
== 128。
layer_fc1複製代碼
添加另一個全鏈接層,它的輸出是一個長度爲10的向量,它肯定了輸入圖是屬於哪一個類別。這層並無用到ReLU。
layer_fc2 = new_fc_layer(input=layer_fc1,
num_inputs=fc_size,
num_outputs=num_classes,
use_relu=False)複製代碼
layer_fc2複製代碼
第二個全鏈接層估算了輸入圖有多大的可能屬於10個類別中的其中一個。然而,這是很粗略的估計而且很難解釋,由於數值可能很小或很大,所以咱們會對它們作歸一化,將每一個元素限制在0到1之間,而且相加爲1。這用一個稱爲softmax的函數來計算的,結果保存在y_pred
中。
y_pred = tf.nn.softmax(layer_fc2)複製代碼
類別數字是最大元素的索引。
y_pred_cls = tf.argmax(y_pred, dimension=1)複製代碼
爲了使模型更好地對輸入圖像進行分類,咱們必須改變weights
和biases
變量。首先咱們須要對比模型y_pred
的預測輸出和指望輸出的y_true
,來了解目前模型的性能如何。
交叉熵(cross-entropy)是在分類中使用的性能度量。交叉熵是一個常爲正值的連續函數,若是模型的預測值精準地符合指望的輸出,它就等於零。所以,優化的目的就是經過改變網絡層的變量來最小化交叉熵。
TensorFlow有一個內置的計算交叉熵的函數。這個函數內部計算了softmax,因此咱們要用layer_fc2
的輸出而非直接用y_pred
,由於y_pred
上已經計算了softmax。
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2,
labels=y_true)複製代碼
咱們爲每一個圖像分類計算了交叉熵,因此有一個當前模型在每張圖上表現的度量。可是爲了用交叉熵來指導模型變量的優化,咱們須要一個額外的標量值,所以簡單地利用全部圖像分類交叉熵的均值。
cost = tf.reduce_mean(cross_entropy)複製代碼
既然咱們有一個須要被最小化的損失度量,接着就能夠創建優化一個優化器。這個例子中,咱們使用的是梯度降低的變體AdamOptimizer
。
優化過程並非在這裏執行。實際上,還沒計算任何東西,咱們只是往TensorFlow圖中添加了優化器,以便以後的操做。
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost)複製代碼
咱們須要另一些性能度量,來向用戶展現這個過程。
這是一個布爾值向量,表明預測類型是否等於每張圖片的真實類型。
correct_prediction = tf.equal(y_pred_cls, y_true_cls)複製代碼
上面的計算先將布爾值向量類型轉換成浮點型向量,這樣子False就變成0,True變成1,而後計算這些值的平均數,以此來計算分類的準確度。
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))複製代碼
一旦建立了TensorFlow圖,咱們須要建立一個TensorFlow會話,用來運行圖。
session = tf.Session()複製代碼
咱們須要在開始優化weights和biases變量以前對它們進行初始化。
session.run(tf.global_variables_initializer())複製代碼
在訓練集中有50,000張圖。用這些圖像計算模型的梯度會花不少時間。所以咱們利用隨機梯度降低的方法,它在優化器的每次迭代裏只用到了一小部分的圖像。
若是內存耗盡致使電腦死機或變得很慢,你應該試着減小這些數量,但同時可能還須要更優化的迭代。
train_batch_size = 64複製代碼
函數執行了屢次的優化迭代來逐步地提高網絡層的變量。在每次迭代中,從訓練集中選擇一批新的數據,而後TensorFlow用這些訓練樣原本執行優化器。每100次迭代會打印出相關信息。
# Counter for total number of iterations performed so far.
total_iterations = 0
def optimize(num_iterations):
# Ensure we update the global variable rather than a local copy.
global total_iterations
# Start-time used for printing time-usage below.
start_time = time.time()
for i in range(total_iterations,
total_iterations + num_iterations):
# Get a batch of training examples.
# x_batch now holds a batch of images and
# y_true_batch are the true labels for those images.
x_batch, y_true_batch = data.train.next_batch(train_batch_size)
# Put the batch into a dict with the proper names
# for placeholder variables in the TensorFlow graph.
feed_dict_train = {x: x_batch,
y_true: y_true_batch}
# Run the optimizer using this batch of training data.
# TensorFlow assigns the variables in feed_dict_train
# to the placeholder variables and then runs the optimizer.
session.run(optimizer, feed_dict=feed_dict_train)
# Print status every 100 iterations.
if i % 100 == 0:
# Calculate the accuracy on the training-set.
acc = session.run(accuracy, feed_dict=feed_dict_train)
# Message for printing.
msg = "Optimization Iteration: {0:>6}, Training Accuracy: {1:>6.1%}"
# Print it.
print(msg.format(i + 1, acc))
# Update the total number of iterations performed.
total_iterations += num_iterations
# Ending time.
end_time = time.time()
# Difference between start and end-times.
time_dif = end_time - start_time
# Print the time-usage.
print("Time usage: " + str(timedelta(seconds=int(round(time_dif)))))複製代碼
函數用來繪製測試集中被誤分類的樣本。
def plot_example_errors(cls_pred, correct):
# This function is called from print_test_accuracy() below.
# cls_pred is an array of the predicted class-number for
# all images in the test-set.
# correct is a boolean array whether the predicted class
# is equal to the true class for each image in the test-set.
# Negate the boolean array.
incorrect = (correct == False)
# Get the images from the test-set that have been
# incorrectly classified.
images = data.test.images[incorrect]
# Get the predicted classes for those images.
cls_pred = cls_pred[incorrect]
# Get the true classes for those images.
cls_true = data.test.cls[incorrect]
# Plot the first 9 images.
plot_images(images=images[0:9],
cls_true=cls_true[0:9],
cls_pred=cls_pred[0:9])複製代碼
def plot_confusion_matrix(cls_pred):
# This is called from print_test_accuracy() below.
# cls_pred is an array of the predicted class-number for
# all images in the test-set.
# Get the true classifications for the test-set.
cls_true = data.test.cls
# Get the confusion matrix using sklearn.
cm = confusion_matrix(y_true=cls_true,
y_pred=cls_pred)
# Print the confusion matrix as text.
print(cm)
# Plot the confusion matrix as an image.
plt.matshow(cm)
# Make various adjustments to the plot.
plt.colorbar()
tick_marks = np.arange(num_classes)
plt.xticks(tick_marks, range(num_classes))
plt.yticks(tick_marks, range(num_classes))
plt.xlabel('Predicted')
plt.ylabel('True')
# Ensure the plot is shown correctly with multiple plots
# in a single Notebook cell.
plt.show()複製代碼
函數用來打印測試集上的分類準確度。
爲測試集上的全部圖片計算分類會花費一段時間,所以咱們直接用這個函數來調用上面的結果,這樣就不用每次都從新計算了。
這個函數可能會佔用不少電腦內存,這也是爲何將測試集分紅更小的幾個部分。若是你的電腦內存比較小或死機了,就要試着下降batch-size。
# Split the test-set into smaller batches of this size.
test_batch_size = 256
def print_test_accuracy(show_example_errors=False, show_confusion_matrix=False):
# Number of images in the test-set.
num_test = len(data.test.images)
# Allocate an array for the predicted classes which
# will be calculated in batches and filled into this array.
cls_pred = np.zeros(shape=num_test, dtype=np.int)
# Now calculate the predicted classes for the batches.
# We will just iterate through all the batches.
# There might be a more clever and Pythonic way of doing this.
# The starting index for the next batch is denoted i.
i = 0
while i < num_test:
# The ending index for the next batch is denoted j.
j = min(i + test_batch_size, num_test)
# Get the images from the test-set between index i and j.
images = data.test.images[i:j, :]
# Get the associated labels.
labels = data.test.labels[i:j, :]
# Create a feed-dict with these images and labels.
feed_dict = {x: images,
y_true: labels}
# Calculate the predicted class using TensorFlow.
cls_pred[i:j] = session.run(y_pred_cls, feed_dict=feed_dict)
# Set the start-index for the next batch to the
# end-index of the current batch.
i = j
# Convenience variable for the true class-numbers of the test-set.
cls_true = data.test.cls
# Create a boolean array whether each image is correctly classified.
correct = (cls_true == cls_pred)
# Calculate the number of correctly classified images.
# When summing a boolean array, False means 0 and True means 1.
correct_sum = correct.sum()
# Classification accuracy is the number of correctly classified
# images divided by the total number of images in the test-set.
acc = float(correct_sum) / num_test
# Print the accuracy.
msg = "Accuracy on Test-Set: {0:.1%} ({1} / {2})"
print(msg.format(acc, correct_sum, num_test))
# Plot some examples of mis-classifications, if desired.
if show_example_errors:
print("Example errors:")
plot_example_errors(cls_pred=cls_pred, correct=correct)
# Plot the confusion matrix, if desired.
if show_confusion_matrix:
print("Confusion Matrix:")
plot_confusion_matrix(cls_pred=cls_pred)複製代碼
測試集上的準確度很低,這是因爲模型只作了初始化,並沒作任何優化,因此它只是對圖像作隨機分類。
print_test_accuracy()複製代碼
Accuracy on Test-Set: 10.9% (1093 / 10000)
作了一次優化後,此時優化器的學習率很低,性能其實並無多大提高。
optimize(num_iterations=1)複製代碼
Optimization Iteration: 1, Training Accuracy: 6.2%
Time usage: 0:00:00
print_test_accuracy()複製代碼
Accuracy on Test-Set: 13.0% (1296 / 10000)
100次優化迭代以後,模型顯著地提高了分類的準確度。
optimize(num_iterations=99) # We already performed 1 iteration above.複製代碼
Time usage: 0:00:00
print_test_accuracy(show_example_errors=True)複製代碼
Accuracy on Test-Set: 66.6% (6656 / 10000)
Example errors:
1000次優化迭代以後,模型在測試集上的準確度超過了90%。
optimize(num_iterations=900) # We performed 100 iterations above.複製代碼
Optimization Iteration: 101, Training Accuracy: 71.9%
Optimization Iteration: 201, Training Accuracy: 76.6%
Optimization Iteration: 301, Training Accuracy: 71.9%
Optimization Iteration: 401, Training Accuracy: 85.9%
Optimization Iteration: 501, Training Accuracy: 89.1%
Optimization Iteration: 601, Training Accuracy: 95.3%
Optimization Iteration: 701, Training Accuracy: 90.6%
Optimization Iteration: 801, Training Accuracy: 92.2%
Optimization Iteration: 901, Training Accuracy: 95.3%
Time usage: 0:00:03
print_test_accuracy(show_example_errors=True)複製代碼
Accuracy on Test-Set: 93.1% (9308 / 10000)
Example errors:
通過10,000次優化迭代後,測試集上的分類準確率高達99%。
optimize(num_iterations=9000) # We performed 1000 iterations above.複製代碼
Optimization Iteration: 1001, Training Accuracy: 98.4%
Optimization Iteration: 1101, Training Accuracy: 93.8%
Optimization Iteration: 1201, Training Accuracy: 92.2%
Optimization Iteration: 1301, Training Accuracy: 95.3%
Optimization Iteration: 1401, Training Accuracy: 93.8%
Optimization Iteration: 1501, Training Accuracy: 93.8%
Optimization Iteration: 1601, Training Accuracy: 92.2%
Optimization Iteration: 1701, Training Accuracy: 92.2%
Optimization Iteration: 1801, Training Accuracy: 89.1%
Optimization Iteration: 1901, Training Accuracy: 95.3%
Optimization Iteration: 2001, Training Accuracy: 93.8%
Optimization Iteration: 2101, Training Accuracy: 98.4%
Optimization Iteration: 2201, Training Accuracy: 92.2%
Optimization Iteration: 2301, Training Accuracy: 95.3%
Optimization Iteration: 2401, Training Accuracy: 100.0%
Optimization Iteration: 2501, Training Accuracy: 96.9%
Optimization Iteration: 2601, Training Accuracy: 93.8%
Optimization Iteration: 2701, Training Accuracy: 100.0%
Optimization Iteration: 2801, Training Accuracy: 95.3%
Optimization Iteration: 2901, Training Accuracy: 95.3%
Optimization Iteration: 3001, Training Accuracy: 96.9%
Optimization Iteration: 3101, Training Accuracy: 96.9%
Optimization Iteration: 3201, Training Accuracy: 95.3%
Optimization Iteration: 3301, Training Accuracy: 96.9%
Optimization Iteration: 3401, Training Accuracy: 98.4%
Optimization Iteration: 3501, Training Accuracy: 100.0%
Optimization Iteration: 3601, Training Accuracy: 98.4%
Optimization Iteration: 3701, Training Accuracy: 95.3%
Optimization Iteration: 3801, Training Accuracy: 95.3%
Optimization Iteration: 3901, Training Accuracy: 95.3%
Optimization Iteration: 4001, Training Accuracy: 100.0%
Optimization Iteration: 4101, Training Accuracy: 93.8%
Optimization Iteration: 4201, Training Accuracy: 95.3%
Optimization Iteration: 4301, Training Accuracy: 100.0%
Optimization Iteration: 4401, Training Accuracy: 96.9%
Optimization Iteration: 4501, Training Accuracy: 100.0%
Optimization Iteration: 4601, Training Accuracy: 100.0%
Optimization Iteration: 4701, Training Accuracy: 100.0%
Optimization Iteration: 4801, Training Accuracy: 98.4%
Optimization Iteration: 4901, Training Accuracy: 98.4%
Optimization Iteration: 5001, Training Accuracy: 98.4%
Optimization Iteration: 5101, Training Accuracy: 100.0%
Optimization Iteration: 5201, Training Accuracy: 95.3%
Optimization Iteration: 5301, Training Accuracy: 96.9%
Optimization Iteration: 5401, Training Accuracy: 100.0%
Optimization Iteration: 5501, Training Accuracy: 100.0%
Optimization Iteration: 5601, Training Accuracy: 100.0%
Optimization Iteration: 5701, Training Accuracy: 96.9%
Optimization Iteration: 5801, Training Accuracy: 98.4%
Optimization Iteration: 5901, Training Accuracy: 100.0%
Optimization Iteration: 6001, Training Accuracy: 95.3%
Optimization Iteration: 6101, Training Accuracy: 96.9%
Optimization Iteration: 6201, Training Accuracy: 100.0%
Optimization Iteration: 6301, Training Accuracy: 96.9%
Optimization Iteration: 6401, Training Accuracy: 100.0%
Optimization Iteration: 6501, Training Accuracy: 98.4%
Optimization Iteration: 6601, Training Accuracy: 98.4%
Optimization Iteration: 6701, Training Accuracy: 95.3%
Optimization Iteration: 6801, Training Accuracy: 100.0%
Optimization Iteration: 6901, Training Accuracy: 98.4%
Optimization Iteration: 7001, Training Accuracy: 95.3%
Optimization Iteration: 7101, Training Accuracy: 100.0%
Optimization Iteration: 7201, Training Accuracy: 100.0%
Optimization Iteration: 7301, Training Accuracy: 100.0%
Optimization Iteration: 7401, Training Accuracy: 100.0%
Optimization Iteration: 7501, Training Accuracy: 100.0%
Optimization Iteration: 7601, Training Accuracy: 96.9%
Optimization Iteration: 7701, Training Accuracy: 98.4%
Optimization Iteration: 7801, Training Accuracy: 95.3%
Optimization Iteration: 7901, Training Accuracy: 100.0%
Optimization Iteration: 8001, Training Accuracy: 100.0%
Optimization Iteration: 8101, Training Accuracy: 98.4%
Optimization Iteration: 8201, Training Accuracy: 98.4%
Optimization Iteration: 8301, Training Accuracy: 100.0%
Optimization Iteration: 8401, Training Accuracy: 96.9%
Optimization Iteration: 8501, Training Accuracy: 98.4%
Optimization Iteration: 8601, Training Accuracy: 98.4%
Optimization Iteration: 8701, Training Accuracy: 100.0%
Optimization Iteration: 8801, Training Accuracy: 100.0%
Optimization Iteration: 8901, Training Accuracy: 98.4%
Optimization Iteration: 9001, Training Accuracy: 95.3%
Optimization Iteration: 9101, Training Accuracy: 100.0%
Optimization Iteration: 9201, Training Accuracy: 100.0%
Optimization Iteration: 9301, Training Accuracy: 96.9%
Optimization Iteration: 9401, Training Accuracy: 96.9%
Optimization Iteration: 9501, Training Accuracy: 98.4%
Optimization Iteration: 9601, Training Accuracy: 100.0%
Optimization Iteration: 9701, Training Accuracy: 96.9%
Optimization Iteration: 9801, Training Accuracy: 98.4%
Optimization Iteration: 9901, Training Accuracy: 98.4%
Time usage: 0:00:26
print_test_accuracy(show_example_errors=True,
show_confusion_matrix=True)複製代碼
Accuracy on Test-Set: 98.8% (9880 / 10000)
Example errors:
Confusion Matrix:
[[ 973 0 1 0 0 1 1 0 3 1]
[ 0 1129 2 1 0 0 1 1 1 0]
[ 1 2 1023 2 0 0 0 2 2 0]
[ 1 0 1 1002 0 3 0 1 2 0]
[ 0 1 0 0 974 0 1 0 2 4]
[ 2 0 0 3 0 882 2 0 1 2]
[ 4 1 0 0 1 4 948 0 0 0]
[ 1 4 11 2 0 0 0 1004 2 4]
[ 3 0 4 2 1 2 0 0 960 2]
[ 3 4 1 0 7 5 0 2 2 985]]
爲了理解爲何卷積神經網絡能夠識別手寫數字,咱們將會對卷積濾波和輸出圖像進行可視化。
def plot_conv_weights(weights, input_channel=0):
# Assume weights are TensorFlow ops for 4-dim variables
# e.g. weights_conv1 or weights_conv2.
# Retrieve the values of the weight-variables from TensorFlow.
# A feed-dict is not necessary because nothing is calculated.
w = session.run(weights)
# Get the lowest and highest values for the weights.
# This is used to correct the colour intensity across
# the images so they can be compared with each other.
w_min = np.min(w)
w_max = np.max(w)
# Number of filters used in the conv. layer.
num_filters = w.shape[3]
# Number of grids to plot.
# Rounded-up, square-root of the number of filters.
num_grids = math.ceil(math.sqrt(num_filters))
# Create figure with a grid of sub-plots.
fig, axes = plt.subplots(num_grids, num_grids)
# Plot all the filter-weights.
for i, ax in enumerate(axes.flat):
# Only plot the valid filter-weights.
if i<num_filters:
# Get the weights for the i'th filter of the input channel.
# See new_conv_layer() for details on the format
# of this 4-dim tensor.
img = w[:, :, input_channel, i]
# Plot image.
ax.imshow(img, vmin=w_min, vmax=w_max,
interpolation='nearest', cmap='seismic')
# Remove ticks from the plot.
ax.set_xticks([])
ax.set_yticks([])
# Ensure the plot is shown correctly with multiple plots
# in a single Notebook cell.
plt.show()複製代碼
def plot_conv_layer(layer, image):
# Assume layer is a TensorFlow op that outputs a 4-dim tensor
# which is the output of a convolutional layer,
# e.g. layer_conv1 or layer_conv2.
# Create a feed-dict containing just one image.
# Note that we don't need to feed y_true because it is
# not used in this calculation.
feed_dict = {x: [image]}
# Calculate and retrieve the output values of the layer
# when inputting that image.
values = session.run(layer, feed_dict=feed_dict)
# Number of filters used in the conv. layer.
num_filters = values.shape[3]
# Number of grids to plot.
# Rounded-up, square-root of the number of filters.
num_grids = math.ceil(math.sqrt(num_filters))
# Create figure with a grid of sub-plots.
fig, axes = plt.subplots(num_grids, num_grids)
# Plot the output images of all the filters.
for i, ax in enumerate(axes.flat):
# Only plot the images for valid filters.
if i<num_filters:
# Get the output image of using the i'th filter.
# See new_conv_layer() for details on the format
# of this 4-dim tensor.
img = values[0, :, :, i]
# Plot image.
ax.imshow(img, interpolation='nearest', cmap='binary')
# Remove ticks from the plot.
ax.set_xticks([])
ax.set_yticks([])
# Ensure the plot is shown correctly with multiple plots
# in a single Notebook cell.
plt.show()複製代碼
繪製圖像的幫助函數
def plot_image(image):
plt.imshow(image.reshape(img_shape),
interpolation='nearest',
cmap='binary')
plt.show()複製代碼
以下所示,繪製一張測試集中的圖像。
image1 = data.test.images[0]
plot_image(image1)複製代碼
繪製測試集裏的另外一張圖像。
image2 = data.test.images[13]
plot_image(image2)複製代碼
如今繪製第一個卷積層的濾波權重。
其中正值權重是紅色的,負值爲藍色。
plot_conv_weights(weights=weights_conv1)複製代碼
將這些卷積濾波添加到第一張輸入圖像,獲得如下輸出,它們也做爲第二個卷積層的輸入。注意這些圖像被降採樣到14 x 14像素,即原始輸入圖分辨率的一半。
plot_conv_layer(layer=layer_conv1, image=image1)複製代碼
下面是將卷積濾波添加到第二張圖像的結果。
plot_conv_layer(layer=layer_conv1, image=image2)複製代碼
從這些圖像很難看出卷積濾波的做用是什麼。顯然,它們生成了輸入圖像的一些變體,就像光線從不一樣角度打到圖像上併產生陰影同樣。
如今繪製第二個卷積層的濾波權重。
第一個卷積層有16個輸出通道,表明着第二個卷基層有16個輸入。第二個卷積層的每一個輸入通道也有一些權重濾波。咱們先繪製第一個通道的權重濾波。
一樣的,正值是紅色,負值是藍色。
plot_conv_weights(weights=weights_conv2, input_channel=0)複製代碼
第二個卷積層共有16個輸入通道,咱們能夠一樣地畫出其餘圖像。這裏咱們畫出第二個通道的圖像。
plot_conv_weights(weights=weights_conv2, input_channel=1)複製代碼
因爲這些濾波是高維度的,很難理解它們是如何應用的。
給第一個卷積層的輸出加上這些濾波,獲得下面的圖像。
這些圖像被降採樣至7 x 7的像素,即上一個卷積層輸出的一半。
plot_conv_layer(layer=layer_conv2, image=image1)複製代碼
這是給第二張圖像加上濾波權重的結果。
plot_conv_layer(layer=layer_conv2, image=image2)複製代碼
從這些圖像來看,彷佛第二個卷積層會檢測輸入圖像中的線段和模式,這對輸入圖中的局部變化不那麼敏感。
如今咱們已經用TensorFlow完成了任務,關閉session,釋放資源。
# This has been commented out in case you want to modify and experiment
# with the Notebook without having to restart it.
# session.close()複製代碼
咱們看到卷積神經網絡在識別手寫數字上的表現要比教程#01中簡單線性模型要好得多。卷積神經網絡可能達到99%的分類準確率,若是你作一些調整,還可能表現得更好,而簡單線性模型只有91%的正確率。
然而,卷積神經網絡實現起來更復雜,而且光看權重濾波也很差理解爲何它能奏效或者失敗。
所以咱們須要一個更簡單的實現卷積神經網絡的方式,同時也要尋找一種更好的方法來對它們內部工做原理進行可視化。
下面使一些可能會讓你提高TensorFlow技能的一些建議練習。爲了學習如何更合適地使用TensorFlow,實踐經驗是很重要的。
在你對這個Notebook進行修改以前,可能須要先備份一下。
若是你不改變任何參數,屢次運行Notebook,會獲得完成同樣的結果嗎?隨機性的來源是什麼?
再進行10,000次優化。結果有變好麼?
改變優化器的學習率。
改變層次的屬性,好比卷積濾波器數量、濾波器的大小、全鏈接層中的神經元數量等等。
在全鏈接層以後添加一個drop-out層。在計算分類準確率的時候,drop-out層可能爲0,所以你須要一個placeholder變量。
改變ReLU和max-pooling的順序。它的計算結果相同麼?最快的計算方法是什麼?節省了多少計算量?這也適用於Sigmoid-function和average-pooling嗎?
添加一個或多個卷積層和全鏈接層。這對性能有幫助嗎?
能獲得良好結果的最小可能配置是什麼?
試着在最後一個全鏈接層中使用ReLU。性能有變化嗎?爲何?
卷積層裏不用pooling。這對分類準確率和訓練時間有影響嗎?
在卷積層裏用2x2的stride代替max-pooling?有什麼變化嗎?
不看源碼,本身重寫程序。
向朋友解釋程序如何工做。