Mapreduce是一個計算框架,既然是作計算的框架,那麼表現形式就是有個輸入(input),mapreduce操做這個輸入(input),經過自己定義好的計算模型,獲得一個輸出(output),這個輸出就是咱們所須要的結果。java
咱們要學習的就是這個計算模型的運行規則。在運行一個mapreduce計算任務時候,任務過程被分爲兩個階段:map階段和reduce階段,每一個階段都是用鍵值對(key/value)做爲輸入(input)和輸出(output)。而程序員要作的就是定義好這兩個階段的函數:map函數和reduce函數。node
講解mapreduce運行原理前,首先咱們看看mapreduce裏的hello world實例WordCount,這個實例在任何一個版本的hadoop安裝程序裏都會有,你們很容易找到,這裏我仍是貼出代碼,便於我後面的講解,代碼以下:程序員
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.examples; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: wordcount <in> <out>"); System.exit(2); } Job job = new Job(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
如何運行它,這裏不作累述了,大夥能夠百度下,網上這方面的資料不少。這裏的實例代碼是使用新的api,你們可能在不少書籍裏看到講解mapreduce的WordCount實例都是老版本的api,這裏我不給出老版本的api,由於老版本的api不太建議使用了,你們作開發最好使用新版本的api,新版本api和舊版本api有區別在哪裏:面試
其餘還有不少區別,都是說明新版本api的優點,由於我提倡使用新版api,這裏就不講這些,由於不必再用舊版本,所以這種比較也沒啥意義了。express
下面我對代碼作簡單的講解,你們看到要寫一個mapreduce程序,咱們的實現一個map函數和reduce函數。咱們看看map的方法:apache
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {…}
這裏有三個參數,前面兩個Object key, Text value就是輸入的key和value,第三個參數Context context這是能夠記錄輸入的key和value,例如:context.write(word, one);此外context還會記錄map運算的狀態。編程
對於reduce函數的方法:api
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {…}
reduce函數的輸入也是一個key/value的形式,不過它的value是一個迭代器的形式Iterable<IntWritable> values,也就是說reduce的輸入是一個key對應一組的值的value,reduce也有context和map的context做用一致。數組
至於計算的邏輯就是程序員本身去實現了。緩存
下面就是main函數的調用了,這個我要詳細講述下,首先是:
運行mapreduce程序前都要初始化Configuration,該類主要是讀取mapreduce系統配置信息,這些信息包括hdfs還有mapreduce,也就是安裝hadoop時候的配置文件例如:core-site.xml、hdfs-site.xml和mapred-site.xml等等文件裏的信息,有些童鞋不理解爲啥要這麼作,這個是沒有深刻思考mapreduce計算框架形成,咱們程序員開發mapreduce時候只是在填空,在map函數和reduce函數裏編寫實際進行的業務邏輯,其它的工做都是交給mapreduce框架本身操做的,可是至少咱們要告訴它怎麼操做啊,好比hdfs在哪裏啊,mapreduce的jobstracker在哪裏啊,而這些信息就在conf包下的配置文件裏。
接下來的代碼是:
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: wordcount <in> <out>"); System.exit(2); }
If的語句好理解,就是運行WordCount程序時候必定是兩個參數,若是不是就會報錯退出。至於第一句裏的GenericOptionsParser類,它是用來解釋經常使用hadoop命令,並根據須要爲Configuration對象設置相應的值,其實平時開發裏咱們不太經常使用它,而是讓類實現Tool接口,而後再main函數裏使用ToolRunner運行程序,而ToolRunner內部會調用GenericOptionsParser。
接下來的代碼是:
Job job = new Job(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class);
第一行就是在構建一個job,在mapreduce框架裏一個mapreduce任務也叫mapreduce做業也叫作一個mapreduce的job,而具體的map和reduce運算就是task了,這裏咱們構建一個job,構建時候有兩個參數,一個是conf這個就不累述了,一個是這個job的名稱。
第二行就是裝載程序員編寫好的計算程序,例如咱們的程序類名就是WordCount了。這裏我要作下糾正,雖然咱們編寫mapreduce程序只須要實現map函數和reduce函數,可是實際開發咱們要實現三個類,第三個類是爲了配置mapreduce如何運行map和reduce函數,準確的說就是構建一個mapreduce能執行的job了,例如WordCount類。
第三行和第五行就是裝載map函數和reduce函數實現類了,這裏多了個第四行,這個是裝載Combiner類,這個我後面講mapreduce運行機制時候會講述,其實本例去掉第四行也沒有關係,可是使用了第四行理論上運行效率會更好。
接下來的代碼:
job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class);
這個是定義輸出的key/value的類型,也就是最終存儲在hdfs上結果文件的key/value的類型。
最後的代碼是:
FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1);
第一行就是構建輸入的數據文件,第二行是構建輸出的數據文件,最後一行若是job運行成功了,咱們的程序就會正常退出。FileInputFormat和FileOutputFormat是頗有學問的,我會在下面的mapreduce運行機制裏講解到它們。
好了,mapreduce裏的hello word程序講解完畢,我這個講解是重新辦api進行,這套講解在網絡上仍是比較少的,應該很具備表明性的。
下面我要講講mapreduce的運行機制了,前不久我爲公司出了一套hadoop面試題,裏面就問道了mapreduce運行機制,出題時候我發現這個問題我本身彷佛也將不太清楚,所以最近幾天惡補了下,但願在本文裏能說清楚這個問題。
下面我貼出幾張圖,這些圖都是我在百度圖片裏找到的比較好的圖片:
圖片一:
圖片二:
圖片三:
圖片四:
圖片五:
圖片六:
我如今學習技術很喜歡看圖,每次有了新理解就會去看看圖,每次都會有新的發現。
談mapreduce運行機制,能夠從不少不一樣的角度來描述,好比說從mapreduce運行流程來說解,也能夠從計算模型的邏輯流程來進行講解,也許有些深刻理解了mapreduce運行機制還會從更好的角度來描述,可是將mapreduce運行機制有些東西是避免不了的,就是一個個參入的實例對象,一個就是計算模型的邏輯定義階段,我這裏講解不從什麼流程出發,就從這些一個個牽涉的對象,無論是物理實體仍是邏輯實體。
首先講講物理實體,參入mapreduce做業執行涉及4個獨立的實體:
首先是客戶端要編寫好mapreduce程序,配置好mapreduce的做業也就是job,接下來就是提交job了,提交job是提交到JobTracker上的,這個時候JobTracker就會構建這個job,具體就是分配一個新的job任務的ID值,接下來它會作檢查操做,這個檢查就是肯定輸出目錄是否存在,若是存在那麼job就不能正常運行下去,JobTracker會拋出錯誤給客戶端,接下來還要檢查輸入目錄是否存在,若是不存在一樣拋出錯誤,若是存在JobTracker會根據輸入計算輸入分片(Input Split),若是分片計算不出來也會拋出錯誤,至於輸入分片我後面會作講解的,這些都作好了JobTracker就會配置Job須要的資源了。分配好資源後,JobTracker就會初始化做業,初始化主要作的是將Job放入一個內部的隊列,讓配置好的做業調度器能調度到這個做業,做業調度器會初始化這個job,初始化就是建立一個正在運行的job對象(封裝任務和記錄信息),以便JobTracker跟蹤job的狀態和進程。
初始化完畢後,做業調度器會獲取輸入分片信息(input split),每一個分片建立一個map任務。接下來就是任務分配了,這個時候tasktracker會運行一個簡單的循環機制按期發送心跳給jobtracker,心跳間隔是5秒,程序員能夠配置這個時間,心跳就是jobtracker和tasktracker溝通的橋樑,經過心跳,jobtracker能夠監控tasktracker是否存活,也能夠獲取tasktracker處理的狀態和問題,同時tasktracker也能夠經過心跳裏的返回值獲取jobtracker給它的操做指令。任務分配好後就是執行任務了。在任務執行時候jobtracker能夠經過心跳機制監控tasktracker的狀態和進度,同時也能計算出整個job的狀態和進度,而tasktracker也能夠本地監控本身的狀態和進度。當jobtracker得到了最後一個完成指定任務的tasktracker操做成功的通知時候,jobtracker會把整個job狀態置爲成功,而後當客戶端查詢job運行狀態時候(注意:這個是異步操做),客戶端會查到job完成的通知的。若是job中途失敗,mapreduce也會有相應機制處理,通常而言若是不是程序員程序自己有bug,mapreduce錯誤處理機制都能保證提交的job能正常完成。
下面我從邏輯實體的角度講解mapreduce運行機制,這些按照時間順序包括:輸入分片(input split)、map階段、combiner階段、shuffle階段和reduce階段。
1. 輸入分片(input split):在進行map計算以前,mapreduce會根據輸入文件計算輸入分片(input split),每一個輸入分片(input split)針對一個map任務,輸入分片(input split)存儲的並不是數據自己,而是一個分片長度和一個記錄數據的位置的數組,輸入分片(input split)每每和hdfs的block(塊)關係很密切,假如咱們設定hdfs的塊的大小是64mb,若是咱們輸入有三個文件,大小分別是3mb、65mb和127mb,那麼mapreduce會把3mb文件分爲一個輸入分片(input split),65mb則是兩個輸入分片(input split)而127mb也是兩個輸入分片(input split),換句話說咱們若是在map計算前作輸入分片調整,例如合併小文件,那麼就會有5個map任務將執行,並且每一個map執行的數據大小不均,這個也是mapreduce優化計算的一個關鍵點。
2. map階段:就是程序員編寫好的map函數了,所以map函數效率相對好控制,並且通常map操做都是本地化操做也就是在數據存儲節點上進行;
3. combiner階段:combiner階段是程序員能夠選擇的,combiner其實也是一種reduce操做,所以咱們看見WordCount類裏是用reduce進行加載的。Combiner是一個本地化的reduce操做,它是map運算的後續操做,主要是在map計算出中間文件前作一個簡單的合併重複key值的操做,例如咱們對文件裏的單詞頻率作統計,map計算時候若是碰到一個hadoop的單詞就會記錄爲1,可是這篇文章裏hadoop可能會出現n屢次,那麼map輸出文件冗餘就會不少,所以在reduce計算前對相同的key作一個合併操做,那麼文件會變小,這樣就提升了寬帶的傳輸效率,畢竟hadoop計算力寬帶資源每每是計算的瓶頸也是最爲寶貴的資源,可是combiner操做是有風險的,使用它的原則是combiner的輸入不會影響到reduce計算的最終輸入,例如:若是計算只是求總數,最大值,最小值可使用combiner,可是作平均值計算使用combiner的話,最終的reduce計算結果就會出錯。
4. shuffle階段:將map的輸出做爲reduce的輸入的過程就是shuffle了,這個是mapreduce優化的重點地方。這裏我不講怎麼優化shuffle階段,講講shuffle階段的原理,由於大部分的書籍裏都沒講清楚shuffle階段。Shuffle一開始就是map階段作輸出操做,通常mapreduce計算的都是海量數據,map輸出時候不可能把全部文件都放到內存操做,所以map寫入磁盤的過程十分的複雜,更況且map輸出時候要對結果進行排序,內存開銷是很大的,map在作輸出時候會在內存裏開啓一個環形內存緩衝區,這個緩衝區專門用來輸出的,默認大小是100mb,而且在配置文件裏爲這個緩衝區設定了一個閥值,默認是0.80(這個大小和閥值都是能夠在配置文件裏進行配置的),同時map還會爲輸出操做啓動一個守護線程,若是緩衝區的內存達到了閥值的80%時候,這個守護線程就會把內容寫到磁盤上,這個過程叫spill,另外的20%內存能夠繼續寫入要寫進磁盤的數據,寫入磁盤和寫入內存操做是互不干擾的,若是緩存區被撐滿了,那麼map就會阻塞寫入內存的操做,讓寫入磁盤操做完成後再繼續執行寫入內存操做,前面我講到寫入磁盤前會有個排序操做,這個是在寫入磁盤操做時候進行,不是在寫入內存時候進行的,若是咱們定義了combiner函數,那麼排序前還會執行combiner操做。
每次spill操做也就是寫入磁盤操做時候就會寫一個溢出文件,也就是說在作map輸出有幾回spill就會產生多少個溢出文件,等map輸出所有作完後,map會合並這些輸出文件。這個過程裏還會有一個Partitioner操做,對於這個操做不少人都很迷糊,其實Partitioner操做和map階段的輸入分片(Input split)很像,一個Partitioner對應一個reduce做業,若是咱們mapreduce操做只有一個reduce操做,那麼Partitioner就只有一個,若是咱們有多個reduce操做,那麼Partitioner對應的就會有多個,Partitioner所以就是reduce的輸入分片,這個程序員能夠編程控制,主要是根據實際key和value的值,根據實際業務類型或者爲了更好的reduce負載均衡要求進行,這是提升reduce效率的一個關鍵所在。到了reduce階段就是合併map輸出文件了,Partitioner會找到對應的map輸出文件,而後進行復制操做,複製操做時reduce會開啓幾個複製線程,這些線程默認個數是5個,程序員也能夠在配置文件更改複製線程的個數,這個複製過程和map寫入磁盤過程相似,也有閥值和內存大小,閥值同樣能夠在配置文件裏配置,而內存大小是直接使用reduce的tasktracker的內存大小,複製時候reduce還會進行排序操做和合並文件操做,這些操做完了就會進行reduce計算了。
5. reduce階段:和map函數同樣也是程序員編寫的,最終結果是存儲在hdfs上的。
這裏我要談談我學習mapreduce思考的一些問題,都是我本身想出解釋的問題,可是某些問題到底對不對,就要廣大童鞋幫我確認了。
① jobtracker的單點故障:jobtracker和hdfs的namenode同樣也存在單點故障,單點故障一直是hadoop被人詬病的大問題,爲何hadoop的作的文件系統和mapreduce計算框架都是高容錯的,可是最重要的管理節點的故障機制卻如此很差,我認爲主要是namenode和jobtracker在實際運行中都是在內存操做,而作到內存的容錯就比較複雜了,只有當內存數據被持久化後容錯纔好作,namenode和jobtracker均可以備份本身持久化的文件,可是這個持久化都會有延遲,所以真的出故障,任然不能總體恢復,另外hadoop框架裏包含zookeeper框架,zookeeper能夠結合jobtracker,用幾臺機器同時部署jobtracker,保證一臺出故障,有一臺立刻能補充上,不過這種方式也無法恢復正在跑的mapreduce任務。
② 作mapreduce計算時候,輸出通常是一個文件夾,並且該文件夾是不能存在,我在出面試題時候提到了這個問題,並且這個檢查作的很早,當咱們提交job時候就會進行,mapreduce之因此這麼設計是保證數據可靠性,若是輸出目錄存在reduce就搞不清楚你究竟是要追加仍是覆蓋,無論是追加和覆蓋操做都會有可能致使最終結果出問題,mapreduce是作海量數據計算,一個生產計算的成本很高,例如一個job徹底執行完可能要幾個小時,所以一切影響錯誤的狀況mapreduce是零容忍的。
③ Mapreduce還有一個InputFormat和OutputFormat,咱們在編寫map函數時候發現map方法的參數是之間操做行數據,沒有牽涉到InputFormat,這些事情在咱們new Path時候mapreduce計算框架幫咱們作好了,而OutputFormat也是reduce幫咱們作好了,咱們使用什麼樣的輸入文件,就要調用什麼樣的InputFormat,InputFormat是和咱們輸入的文件類型相關的,mapreduce裏經常使用的InputFormat有FileInputFormat普通文本文件,SequenceFileInputFormat是指hadoop的序列化文件,另外還有KeyValueTextInputFormat。OutputFormat就是咱們想最終存儲到hdfs系統上的文件格式了,這個根據你須要定義了,hadoop有支持不少文件格式,這裏不一一列舉,想知道百度下就看到了。
好了,文章寫完了,呵呵,這篇我本身感受寫的不錯,是目前hadoop系列文章裏寫的最好的,我後面會再接再礪的。加油!!!