Tensorflow學習筆記3:TensorBoard可視化學習

TensorBoard簡介

Tensorflow發佈包中提供了TensorBoard,用於展現Tensorflow任務在計算過程當中的Graph、定量指標圖以及附加數據。大體的效果以下所示, html

tensorboard_graphs

TensorBoard工做機制

TensorBoard 經過讀取 TensorFlow 的事件文件來運行。TensorFlow 的事件文件包括了你會在 TensorFlow 運行中涉及到的主要數據。關於TensorBoard的詳細介紹請參考TensorBoard:可視化學習。下面作個簡單介紹。python

Tensorflow的API中提供了一種叫作Summary的操做,用於將Tensorflow計算過程的相關數據序列化成字符串Tensor。例如標量數據的圖表scalar_summary或者梯度權重的分佈histogram_summarygit

經過tf.train.SummaryWriter來將序列化後的Summary數據保存到磁盤指定目錄(經過參數logdir指定)。此外,SummaryWriter構造函數還包含了一個可選參數GraphDef,經過指定該參數,能夠在TensorBoard中展現Tensorflow中的Graph(如上圖所示)。github

大體的代碼框架以下所示:docker

merged_summary_op = tf.merge_all_summaries()
summary_writer = tf.train.SummaryWriter('/tmp/mnist_logs', sess.graph)
total_step = 0
while training:
    total_step += 1
    session.run(training_op)
    if total_step % 100 == 0:
        summary_str = session.run(merged_summary_op)
        summary_writer.add_summary(summary_str, total_step)

啓動TensorBoard的命令以下,api

python tensorflow/tensorboard/tensorboard.py --logdir=/tmp/mnist_logs

其中--logdir命令行參數指定的路徑必須跟SummaryWriter的logdir參數值保持一致,TensorBoard纔可以正確讀取到Tensorflow的事件文件。瀏覽器

啓動Tensorflow後,咱們在瀏覽器中輸入http://localhost:6006 便可訪問TensorBoard頁面了。bash

經過MNIST實例來驗證TensorBoard

tensorflow/tensorflow的源代碼目錄tensorflow/examples/tutorials/mnist目錄下提供了手寫數字MNIST識別樣例代碼。該樣例代碼一樣包含了SummaryWriter的相關代碼,咱們可使用該樣例代碼來驗證一下TensorBoard的效果。session

首先,克隆一下tensorflow的代碼庫到本地,框架

$ git clone https://github.com/tensorflow/tensorflow.git
$ cd tensorflow/examples/tutorials/mnist/
$ emacs fully_connected_feed.py

對fully_connected_feed.py的代碼作一下下面兩個地方的修改:

  1. 將2九、30行的import語句修改一下

    import input_data
    import mnist
  2. 將154行的FLAGS.train_dir修改爲'/opt/tensor':

    # Instantiate a SummaryWriter to output summaries and the Graph.
    summary_writer = tf.train.SummaryWriter('/opt/tensor', sess.graph)

樣例代碼準備好了,下面咱們如何啓動TensorBoard。

Tensorflow官方的Docker鏡像tensorflow/tensorflow提供了一個可快速使用Tensorflow的途徑。不過該鏡像默認啓動的是jupyter。咱們經過下面命令經過該鏡像啓動TensorBoard,而且將咱們準備好的MNIST樣例代碼經過volume掛載到容器中。

lienhuadeMacBook-Pro:tensorflow lienhua34$ docker run -d -p 6006:6006 --name=tensorboard -v /Users/lienhua34/Programs/python/tensorflow/tensorflow/examples/tutorials/mnist:/tensorflow/mnist tensorflow/tensorflow tensorboard --logdir=/opt/tensor
50eeb7282f60c10ed52d26f34feeb3472cf36d83c546357801c45e14939adf1a
lienhuadeMacBook-Pro:tensorflow lienhua34$ 
lienhuadeMacBook-Pro:tensorflow lienhua34$ docker ps -a
CONTAINER ID        IMAGE                                    COMMAND                  CREATED             STATUS                   PORTS                              NAMES
50eeb7282f60        tensorflow/tensorflow                    "tensorboard --logdir"   49 minutes ago      Up 4 seconds             0.0.0.0:6006->6006/tcp, 8888/tcp   tensorboard

此時,咱們在瀏覽器中輸入http://localhost:6006/ ,獲得下面的效果, 

tensorboard_home

由於咱們尚未運行MNIST的樣例代碼,因此TensorBoard提示沒有數據。下面咱們將進入tensorboard容器中運行MNIST的樣例代碼,

lienhuadeMacBook-Pro:tensorflow lienhua34$ docker exec -ti tensorboard /bin/bash
root@50eeb7282f60:/notebooks# cd /tensorflow/mnist/                                                                                                                                 
root@50eeb7282f60:/tensorflow/mnist# python fully_connected_feed.py 
Extracting data/train-images-idx3-ubyte.gz
Extracting data/train-labels-idx1-ubyte.gz
Extracting data/t10k-images-idx3-ubyte.gz
Extracting data/t10k-labels-idx1-ubyte.gz
Step 0: loss = 2.31 (0.010 sec)
Step 100: loss = 2.13 (0.007 sec)
Step 200: loss = 1.90 (0.008 sec)
Step 300: loss = 1.56 (0.008 sec)
Step 400: loss = 1.37 (0.007 sec)
Step 500: loss = 0.99 (0.005 sec)
Step 600: loss = 0.82 (0.004 sec)
Step 700: loss = 0.77 (0.004 sec)
Step 800: loss = 0.83 (0.004 sec)
Step 900: loss = 0.54 (0.004 sec)
Training Data Eval:
  Num examples: 55000  Num correct: 47055  Precision @ 1: 0.8555
Validation Data Eval:
  Num examples: 5000  Num correct: 4303  Precision @ 1: 0.8606
Test Data Eval:
  Num examples: 10000  Num correct: 8639  Precision @ 1: 0.8639
Step 1000: loss = 0.52 (0.010 sec)
Step 1100: loss = 0.58 (0.444 sec)
Step 1200: loss = 0.44 (0.005 sec)
Step 1300: loss = 0.42 (0.005 sec)
Step 1400: loss = 0.69 (0.005 sec)
Step 1500: loss = 0.43 (0.004 sec)
Step 1600: loss = 0.43 (0.006 sec)
Step 1700: loss = 0.39 (0.004 sec)
Step 1800: loss = 0.34 (0.004 sec)
Step 1900: loss = 0.34 (0.004 sec)
Training Data Eval:
  Num examples: 55000  Num correct: 49240  Precision @ 1: 0.8953
Validation Data Eval:
  Num examples: 5000  Num correct: 4506  Precision @ 1: 0.9012
Test Data Eval:
  Num examples: 10000  Num correct: 8987  Precision @ 1: 0.8987
root@50eeb7282f60:/tensorflow/mnist# ls -l /opt/tensor
total 76
-rw-r--r-- 1 root root 77059 Oct 25 14:53 events.out.tfevents.1477407177.50eeb7282f60

經過上面的運行結果,咱們看到MNIST樣例代碼正常運行,並且在/opt/tensor目錄下也生成了Tensorflow的事件文件events.out.tfevents.1477407177.50eeb7282f60。此時咱們刷新一下TensorBoard的頁面,看到的效果以下, 

tensorboard_event

tensorboard_histograms

 

若是想看到TensorBoard展現的豐富信息,可使用mnist目錄下的mnist_with_summaries.py文件。

(done)

相關文章
相關標籤/搜索