JavaShuo
欄目
標籤
Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation
時間 2020-12-24
標籤
Knowledge Distillation
简体版
原文
原文鏈接
Loss Source 1: Cross entropy loss,各個階段的分類器都有 Loss Source 2: KL loss,深層的分類器作爲淺層分類器的teacher Loss Source 3: L2 loss from hints,深層分類器的特徵和淺層分類器的特徵做L2 loss,bottleneck即feature adaptation,爲了使student和teacher一樣
>>阅读原文<<
相關文章
1.
Awesome Knowledge-Distillation
2.
Bag of Tricks for Convolutional Neural Networks
3.
Convolutional Neural Networks---Foundations of Convolutional Neural Networks
4.
Convolutional Neural Networks: Application
5.
The Unreasonable Effectiveness of Recurrent Neural Networks
6.
Understanding Convolutional Neural Networks for NLP
7.
[轉] Understanding Convolutional Neural Networks for NLP
8.
Using AJAX to Improve the Bandwidth Performance of Web Applications
9.
[C6] Andrew Ng - Convolutional Neural Networks
10.
Bag of Tricks for Image Classification with Convolutional Neural Networks
更多相關文章...
•
XSLT
元素
-
XSLT 教程
•
XSLT
元素
-
XSLT 教程
•
爲了進字節跳動,我精選了29道Java經典算法題,帶詳細講解
•
Java 8 Stream 教程
相關標籤/搜索
networks
self
teacher
improve
performance
distillation
convolutional
neural
for...of
for..of
Spring教程
0
分享到微博
分享到微信
分享到QQ
每日一句
每一个你不满意的现在,都有一个你没有努力的曾经。
最新文章
1.
android 以太網和wifi共存
2.
沒那麼神祕,三分鐘學會人工智能
3.
k8s 如何 Failover?- 每天5分鐘玩轉 Docker 容器技術(127)
4.
安裝mysql時一直卡在starting the server這一位置,解決方案
5.
秋招總結指南之「性能調優」:MySQL+Tomcat+JVM,還怕面試官的轟炸?
6.
布隆過濾器瞭解
7.
深入lambda表達式,從入門到放棄
8.
中間件-Nginx從入門到放棄。
9.
BAT必備500道面試題:設計模式+開源框架+併發編程+微服務等免費領取!
10.
求職面試寶典:從面試官的角度,給你分享一些面試經驗
本站公眾號
歡迎關注本站公眾號,獲取更多信息
相關文章
1.
Awesome Knowledge-Distillation
2.
Bag of Tricks for Convolutional Neural Networks
3.
Convolutional Neural Networks---Foundations of Convolutional Neural Networks
4.
Convolutional Neural Networks: Application
5.
The Unreasonable Effectiveness of Recurrent Neural Networks
6.
Understanding Convolutional Neural Networks for NLP
7.
[轉] Understanding Convolutional Neural Networks for NLP
8.
Using AJAX to Improve the Bandwidth Performance of Web Applications
9.
[C6] Andrew Ng - Convolutional Neural Networks
10.
Bag of Tricks for Image Classification with Convolutional Neural Networks
>>更多相關文章<<