ArrayList排序算法的源碼

ArrayList,排序方法的調用過程java

// 排序方法
    public void sort(Comparator<? super E> c) {
        final int expectedModCount = modCount;
        Arrays.sort((E[]) elementData, 0, size, c);
        if (modCount != expectedModCount) {
            throw new ConcurrentModificationException();
        }
        modCount++;
    }

    public static <T> void sort(T[] a, int fromIndex, int toIndex,
                                Comparator<? super T> c) {
        // 若是沒有實現比較方法
        if (c == null) {
            sort(a, fromIndex, toIndex);
        } else {
            rangeCheck(a.length, fromIndex, toIndex);
            if (Arrays.LegacyMergeSort.userRequested)
                legacyMergeSort(a, fromIndex, toIndex, c);
            else
                TimSort.sort(a, fromIndex, toIndex, c, null, 0, 0);
        }
    }

    public static void sort(Object[] a, int fromIndex, int toIndex) {
        rangeCheck(a.length, fromIndex, toIndex);
        //經查資料,這是個傳統的歸併排序,須要經過設置系統屬性後,才能進行調用
        // System.setProperty("java.util.Arrays.useLegacyMergeSort", "true");
        if (Arrays.LegacyMergeSort.userRequested)
            legacyMergeSort(a, fromIndex, toIndex);
        else
            ComparableTimSort.sort(a, fromIndex, toIndex, null, 0, 0);
    }

而後繼續看下在沒有實現Comparator接口的狀況,傳統歸併排序的實現數組

private static void legacyMergeSort(Object[] a,
                                        int fromIndex, int toIndex) {
        // 複製對應範圍的數組
        Object[] aux = copyOfRange(a, fromIndex, toIndex);
        mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
    }

    // 使用插入排序進行優化的歸併排序
    // dest爲要排序的數組
    // off:負數,由於aux是複製a數組fromIndex-toIndex範圍的數據,但位置從0開始,fromIndex-off則爲aux開始的座標
    private static void mergeSort(Object[] src,
                                  Object[] dest,
                                  int low,
                                  int high,
                                  int off) {
        int length = high - low;

        // Insertion sort on smallest arrays
        // 長度小於7,則使用插入排序
        if (length < INSERTIONSORT_THRESHOLD) {
            for (int i=low; i<high; i++)
                for (int j=i; j>low &&
                        ((Comparable) dest[j-1]).compareTo(dest[j])>0; j--)
                    swap(dest, j, j-1);
            return;
        }

        // Recursively sort halves of dest into src
        int destLow  = low;
        int destHigh = high;
        low  += off;
        high += off;
        int mid = (low + high) >>> 1;

        // 交換dest,src位置,這樣就能排序src,而後合併到dest
        // 注意這個遞歸的開始,dest爲要排序的數組a,因此最終a會合併成有序的數組
        mergeSort(dest, src, low, mid, -off);
        mergeSort(dest, src, mid, high, -off);

        // If list is already sorted, just copy from src to dest.  This is an
        // optimization that results in faster sorts for nearly ordered lists.
        // 若是說src排完序後,兩個範圍的src,恰好前一個小於後一個,則直接複製。
        // 例如兩個範圍【1,2】【3,4】,其實他們已經有序【1,2,3,4】
        if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) {
            System.arraycopy(src, low, dest, destLow, length);
            return;
        }

        // Merge sorted halves (now in src) into dest
        // 能夠當作兩個有序的數組之間進行合併
        for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
            if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0)
                dest[i] = src[p++];
            else
                dest[i] = src[q++];
        }
    }

    /**
     * Swaps x[a] with x[b].
     */
    private static void swap(Object[] x, int a, int b) {
        Object t = x[a];
        x[a] = x[b];
        x[b] = t;
    }

再看看當前默認使用的排序方法(沒使用Comparable的狀況)ide

/**
     *
     * @param a 待排序的數組
     * @param lo 開始位置,包括當前位置
     * @param hi 結束位置,不包括當前位置
     * @param work
     * @param workBase
     * @param workLen
     */
    static void sort(Object[] a, int lo, int hi, Object[] work, int workBase, int workLen) {
        assert a != null && lo >= 0 && lo <= hi && hi <= a.length;

        int nRemaining  = hi - lo;
        if (nRemaining < 2)
            return;  // Arrays of size 0 and 1 are always sorted

        // If array is small, do a "mini-TimSort" with no merges
        // 排序的範圍小於32的狀況
        if (nRemaining < MIN_MERGE) {
            // 從lo位置開始,返回最長的遞增序列長度,(下面有介紹)
            int initRunLen = countRunAndMakeAscending(a, lo, hi);
            // 折半插入排序,(下面有介紹)
            binarySort(a, lo, hi, lo + initRunLen);
            return;
        }

        /**
         * March over the array once, left to right, finding natural runs,
         * extending short natural runs to minRun elements, and merging runs
         * to maintain stack invariant.
         */
        ComparableTimSort ts = new ComparableTimSort(a, work, workBase, workLen);
        int minRun = minRunLength(nRemaining);
        do {
            // Identify next run
            int runLen = countRunAndMakeAscending(a, lo, hi);

            // If run is short, extend to min(minRun, nRemaining)
            if (runLen < minRun) {
                int force = nRemaining <= minRun ? nRemaining : minRun;
                binarySort(a, lo, lo + force, lo + runLen);
                runLen = force;
            }

            // Push run onto pending-run stack, and maybe merge
            ts.pushRun(lo, runLen);
            ts.mergeCollapse();

            // Advance to find next run
            lo += runLen;
            nRemaining -= runLen;
        } while (nRemaining != 0);

        // Merge all remaining runs to complete sort
        assert lo == hi;
        ts.mergeForceCollapse();
        assert ts.stackSize == 1;
    }

具體看看裏面的方法實現學習

    /**
     * 返回從lo開始最長遞增序列
     * @param a 待排序的數組
     * @param lo 開始位置,包括當前位置
     * @param hi 結束位置,不包含當前位置
     * @return
     */
    private static int countRunAndMakeAscending(Object[] a, int lo, int hi) {
        assert lo < hi;
        int runHi = lo + 1;
        if (runHi == hi)
            return 1;

        // Find end of run, and reverse range if descending
        // 若是lo+1位置的數小於lo位置的數,就找出最長的遞減序列,而後進行反轉
        if (((Comparable) a[runHi++]).compareTo(a[lo]) < 0) { // Descending
            while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) < 0)
                runHi++;
            reverseRange(a, lo, runHi);
        } else {                              // Ascending
            while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) >= 0)
                runHi++;
        }

        // 返回遞增的長度
        return runHi - lo;
    }

    // 反轉
    private static void reverseRange(Object[] a, int lo, int hi) {
        hi--;
        while (lo < hi) {
            Object t = a[lo];
            a[lo++] = a[hi];
            a[hi--] = t;
        }
    }

    /**
     *  折半插入排序
     * @param a 待排序的數組
     * @param lo 開始位置,包括當前位置
     * @param hi 結束位置,不包含當前位置
     * @param start start之前爲遞增序列
     */
    private static void binarySort(Object[] a, int lo, int hi, int start) {
        assert lo <= start && start <= hi;
        if (start == lo)
            start++;
        // 從start開始遍歷
        for ( ; start < hi; start++) {
            Comparable pivot = (Comparable) a[start];

            // Set left (and right) to the index where a[start] (pivot) belongs
            int left = lo;
            int right = start;
            assert left <= right;
            /*
             * Invariants:
             *   pivot >= all in [lo, left).
             *   pivot <  all in [right, start).
             */
            // 二分找lo到start(不包括start)範圍內,找到pivot適合插入的位置
            while (left < right) {
                int mid = (left + right) >>> 1;
                if (pivot.compareTo(a[mid]) < 0)
                    right = mid;
                else
                    left = mid + 1;
            }
            assert left == right;

            /*
             * The invariants still hold: pivot >= all in [lo, left) and
             * pivot < all in [left, start), so pivot belongs at left.  Note
             * that if there are elements equal to pivot, left points to the
             * first slot after them -- that's why this sort is stable.
             * Slide elements over to make room for pivot.
             */
            int n = start - left;  // The number of elements to move
            // Switch is just an optimization for arraycopy in default case
            // 若是隻需後移2位或者1位,直接換值
            // 更多,則調用系統方法進行復制
            switch (n) {
                case 2:  a[left + 2] = a[left + 1];
                case 1:  a[left + 1] = a[left];
                    break;
                default: System.arraycopy(a, left, a, left + 1, n);
            }
            // 後移成功後,賦值
            a[left] = pivot;
        }
    }

 

沒分析完。。。須要學習一波tim sort。。優化

相關文章
相關標籤/搜索