3-13 索引進階

 

1.指定倒序的索引javascript

In [1]:
import pandas as pd
import numpy as np
s=pd.Series(np.arange(5),index=np.arange(5)[::-1],dtype='int64')#index=np.arange(5),指定索引範圍;[::-1]是倒序索引
s
Out[1]:
4    0
3    1
2    2
1    3
0    4
dtype: int64
 

2.索引是否存在這些元素css

In [2]:
s.isin([1,3,4])#索引是否存在這些元素
Out[2]:
4    False
3     True
2    False
1     True
0     True
dtype: bool
In [3]:
s[s.isin([1,3,4])]#取出對應元素
Out[3]:
3    1
1    3
0    4
dtype: int64
 

3.多重索引數據html

In [4]:
s2=pd.Series(np.arange(6),index=pd.MultiIndex.from_product([[0,1],['a','b','c']]))#多重索引
s2
Out[4]:
0  a    0
   b    1
   c    2
1  a    3
   b    4
   c    5
dtype: int32
In [5]:
s2.iloc[s2.index.isin([(1,'a'),(0,'b')])]#多重索引
Out[5]:
0  b    1
1  a    3
dtype: int32
In [6]:
s
Out[6]:
4    0
3    1
2    2
1    3
0    4
dtype: int64
In [7]:
s[s>2]
Out[7]:
1    3
0    4
dtype: int64
 

4.索引數據html5

In [8]:
dates=pd.date_range('20181124',periods=8)#構造8天的數據
df=pd.DataFrame(np.random.randn(8,4),index=dates,columns=['A','B','C','D'])
df
Out[8]:
 
  A B C D
2018-11-24 -1.302542 -1.850999 1.198842 0.134479
2018-11-25 -1.049921 0.277906 -1.470455 0.561132
2018-11-26 -0.572511 0.559077 -0.798659 1.680000
2018-11-27 0.163208 -0.775700 0.293595 -1.309184
2018-11-28 -0.341200 0.889370 0.278003 1.074634
2018-11-29 -1.399622 -0.577925 0.170549 0.872441
2018-11-30 1.146593 0.264301 -1.741237 -0.010080
2018-12-01 1.151403 -1.483099 0.425871 1.522704
In [9]:
df.select(lambda x:x=='A',axis='columns')#索引A列的數據
 
E:\software\Anaconda3 5.2.0\lib\site-packages\ipykernel_launcher.py:1: FutureWarning: 'select' is deprecated and will be removed in a future release. You can use .loc[labels.map(crit)] as a replacement
  """Entry point for launching an IPython kernel.
Out[9]:
 
  A
2018-11-24 -1.302542
2018-11-25 -1.049921
2018-11-26 -0.572511
2018-11-27 0.163208
2018-11-28 -0.341200
2018-11-29 -1.399622
2018-11-30 1.146593
2018-12-01 1.151403
In [10]:
df['A']#和上面同樣
Out[10]:
2018-11-24   -1.302542
2018-11-25   -1.049921
2018-11-26   -0.572511
2018-11-27    0.163208
2018-11-28   -0.341200
2018-11-29   -1.399622
2018-11-30    1.146593
2018-12-01    1.151403
Freq: D, Name: A, dtype: float64
 

5.where判斷條件,並索引位置,替換數據java

In [11]:
df.where(df<0)#把不知足條件的換成NaN
Out[11]:
 
  A B C D
2018-11-24 -1.302542 -1.850999 NaN NaN
2018-11-25 -1.049921 NaN -1.470455 NaN
2018-11-26 -0.572511 NaN -0.798659 NaN
2018-11-27 NaN -0.775700 NaN -1.309184
2018-11-28 -0.341200 NaN NaN NaN
2018-11-29 -1.399622 -0.577925 NaN NaN
2018-11-30 NaN NaN -1.741237 -0.010080
2018-12-01 NaN -1.483099 NaN NaN
In [12]:
df.where(df<0,-df)#把不知足條件的換成-df,也就是能夠替換成其餘形式
Out[12]:
 
  A B C D
2018-11-24 -1.302542 -1.850999 -1.198842 -0.134479
2018-11-25 -1.049921 -0.277906 -1.470455 -0.561132
2018-11-26 -0.572511 -0.559077 -0.798659 -1.680000
2018-11-27 -0.163208 -0.775700 -0.293595 -1.309184
2018-11-28 -0.341200 -0.889370 -0.278003 -1.074634
2018-11-29 -1.399622 -0.577925 -0.170549 -0.872441
2018-11-30 -1.146593 -0.264301 -1.741237 -0.010080
2018-12-01 -1.151403 -1.483099 -0.425871 -1.522704
 

6.query按條件查找索引node

In [13]:
df=pd.DataFrame(np.random.rand(10,3),columns=list('abc'))
df
Out[13]:
 
  a b c
0 0.413798 0.636850 0.364235
1 0.338115 0.290723 0.413065
2 0.120505 0.151662 0.458175
3 0.032937 0.046397 0.231927
4 0.959934 0.210111 0.028029
5 0.319149 0.251683 0.409901
6 0.642514 0.613375 0.926091
7 0.777493 0.467535 0.576821
8 0.139102 0.978898 0.540589
9 0.543792 0.596241 0.330553
In [14]:
df.query('(a<b)')
Out[14]:
 
  a b c
0 0.413798 0.636850 0.364235
2 0.120505 0.151662 0.458175
3 0.032937 0.046397 0.231927
8 0.139102 0.978898 0.540589
9 0.543792 0.596241 0.330553
In [15]:
df.query('(a<b)&(b<c)')
Out[15]:
 
  a b c
2 0.120505 0.151662 0.458175
3 0.032937 0.046397 0.231927
相關文章
相關標籤/搜索