cuda 8.0 注意環境配置,動態庫及bin啓動文件html
cudnn 解壓匹配的tgz包,拷貝到系統配置路徑,並受權java
cmake 安裝3.12.3版本,適應軟件編譯版本要求python
java + ant 配置jvm環境,便於部署及後續opencv執行jar的生成c++
opencv 2.4.11 gpu版本git
openblas caffe準備github
caffe 修改makefile.config 文件,gpu版本web
jsoncpp 後續水印識別依賴包shell
logo_detect 校驗環境配置json
# 安裝gcc等必備程序包 yum install -y gcc gcc-c++ make automake # 獲取安裝包並解壓 # 進入安裝目錄,此處爲 cmake-3.12.3.tar.gz ./bootstrap gmake gmake install
二者的安裝直接按照官網步驟便可,注意/etc/profile中的相關配置,若是指定cuda的bin路徑與lib64在/usr/local下的軟連接下,注意判斷是否匹配bootstrap
此處需特別注意,在安裝時需指定版本 , 實操以下(此處爲本機ubuntu16.04 安裝命令):
sudo dpkg -i cuda-repo-ubuntu1604_9.0.176-1_amd64.deb sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub sudo apt-get update sudo apt-get install cuda-9-0 cuda-libraries-9-0
cudnn安裝:
# 下載 cudnn的tgz壓縮包,解壓並執行以下命令 sudo cp cuda/include/cudnn.h /usr/local/cuda/include sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64 sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
所以處的OpenCV不止是後續caffe的依賴項,也將用於Java web項目,故須要安裝Java環境,以及ant構建OpenCV項目並生成執行jar。
java與ant的安裝再也不贅述,解壓並配置環境變量便可,下爲OpenCV安裝:
# 解壓opencv,建立並進入build目錄 mkdir build && cd build # 構建makefile編譯依賴環境 cmake .. make -j8 make install
注意,安裝gpu版本有時會報如下錯誤:
nvcc fatal : Unsupported gpu architecture 'compute_11' CMake Error at cuda_compile_generated_matrix_operations.cu.o.cmake:206 (message): Error generating /home/smie/Documents/opencv2.4.11/build/modules/core/CMakeFiles/cuda_compile.dir/__/dynamicuda/src/cuda/./cuda_compile_gene rated_matrix_operations.cu.o make[2]: *** [modules/core/CMakeFiles/cuda_compile.dir/__/dynamicuda/src/cuda/./cuda_compile_generated_matrix_operations.cu.o] Error 1 make[1]: *** [modules/core/CMakeFiles/opencv_core.dir/all] Error 2 make[1]: *** Waiting for unfinished jobs....
解決方案以下:
# 使用cmake從新構建編譯環境
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D CUDA_GENERATION=Kepler ..
因本機安裝的OpenCV爲2.4.11,cuda版本爲8.0,編譯報錯,處理方案來源:http://www.javashuo.com/article/p-kxsqakqw-gp.html:
/data/opencv-2.4.11/modules/gpu/src/graphcuts.cpp:120:54: error: ‘NppiGraphcutState’ has not been declared typedef NppStatus (*init_func_t)(NppiSize oSize, NppiGraphcutState** ppStat ^ /data/opencv-2.4.11/modules/gpu/src/graphcuts.cpp:135:18: error: ‘NppiGraphcutState’ does not name a type operator NppiGraphcutState*() ^ /data/opencv-2.4.11/modules/gpu/src/graphcuts.cpp:141:9: error: ‘NppiGraphcutState’ does not name a type NppiGraphcutState* pState;
cuda8.0較新,opencv-2.4.11較早,要編譯經過須要修改源碼:
修改modules/gpu/src/graphcuts.cpp 將 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) 改成 #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || (CUDART_VERSION >= 8000) 從新編譯便可。
caffe依賴blas(BLAS(Basic Linear Algebra Subprograms)是一組線性代數計算中通用的基本運算操做函數集合),Linux自己已自帶有atlas,但安裝時會報錯:
/usr/bin/ld: cannot find -lcblas /usr/bin/ld: cannot find -latlas collect2: error: ld returned 1 exit status make: * [.build_release/lib/libcaffe.so.1.0.0-rc3] Error 1
此處參考博客:https://blog.csdn.net/iotlpf/article/details/74669503,沿用其中的處理方式,安裝openblas
git clone https://github.com/xianyi/OpenBLAS.git cd OpenBLAS make -j8 make install
安裝步驟以下:
git clone https://github.com/open-source-parsers/jsoncpp.git cd jsoncpp mkdir -p build/debug cd build/debug cmake -DCMAKE_BUILD_TYPE=debug -DJSONCPP_LIB_BUILD_SHARED=OFF -G "Unix Makefiles" ../../ make make install
依賴項安裝:
yum install epel-release -y yum install protobuf-devel leveldb-devel snappy-devel opencv-devel boost-devel hdf5-devel -y yum install gflags-devel glog-devel lmdb-devel -y yum install atlas-devel -y
配置Makefile.config,由於使用了openblas以及cuda+cudnn,直接上本地配置:
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers USE_OPENCV := 1 # USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 # OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility. # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility. # For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility. CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_52,code=sm_52 \ -gencode arch=compute_60,code=sm_60 \ -gencode arch=compute_61,code=sm_61 \ -gencode arch=compute_61,code=compute_61 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := open # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! BLAS_INCLUDE := /opt/OpenBLAS/include BLAS_LIB := /opt/OpenBLAS/lib # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. # ANACONDA_HOME := $(HOME)/anaconda # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ # $(ANACONDA_HOME)/include/python2.7 \ # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. PYTHON_LIB := /usr/lib # PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL) # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0) # USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
直接編譯,隨後配置環境變量便可:
make distribute -j16
首先需注意Makefile文件中的相關配置,尤爲是新機器各類環境變量可能的變量須要特別注意。
我這裏報錯:device_alternate.hpp:34:23: fatal error: cublas_v2.h: No such file or direct,由於device_alternate.cpp是caffe的一個文件,一直懷疑是caffe安裝有問題,查看無誤後,判定是Makefile定義的環境變量有錯,由於其中重寫了cuda的路徑,且該路徑在當前機器有變更,致使找不到cuda的cublas_v2.h文件,從新配置路徑便可。