scala的應用--UDF:用戶自定義函數

在window10下安裝了hadoop,用ida建立maven項目。html

    <properties>
        <spark.version>2.2.0</spark.version>
        <scala.version>2.11</scala.version>
        <java.version>1.8</java.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-yarn_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.16</version>
        </dependency>
    </dependencies>


    <build>
        <finalName>learnspark</finalName>
        <plugins>
            <plugin>
                <groupId>net.alchim31.maven</groupId>
                <artifactId>scala-maven-plugin</artifactId>
                <version>3.2.2</version>
                <executions>
                    <execution>
                        <goals>
                            <goal>compile</goal>
                            <goal>testCompile</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-assembly-plugin</artifactId>
                <version>3.0.0</version>
                <configuration>
                    <archive>
                        <manifest>
                            <mainClass>learn</mainClass>
                        </manifest>
                    </archive>
                    <descriptorRefs>
                        <descriptorRef>jar-with-dependencies</descriptorRef>
                    </descriptorRefs>
                </configuration>
                <executions>
                    <execution>
                        <id>make-assembly</id>
                        <phase>package</phase>
                        <goals>
                            <goal>single</goal>
                        </goals>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>

  

數據準備:java

{"name":"張3", "age":20}
{"name":"李4", "age":20}
{"name":"王5", "age":20}
{"name":"趙6", "age":20}
路徑:
data/input/user/user.json
程序:
package com.zouxxyy.spark.sql

import org.apache.spark.SparkConf
import org.apache.spark.sql.expressions.{Aggregator, MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types.{DataType, DoubleType, LongType, StructType}
import org.apache.spark.sql.{Column, DataFrame, Dataset, Encoder, Encoders, Row, SparkSession, TypedColumn}

/**
 * UDF:用戶自定義函數
 */

object UDF {

  def main(args: Array[String]): Unit = {
    System.setProperty("hadoop.home.dir","D:\\gitworkplace\\winutils\\hadoop-2.7.1" )
//這個是用來指定個人hadoop路徑的,若是你的hadoop環境變量沒問題,能夠不寫
    val sparkConf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("UDF")

    // 建立SparkSession
    val spark: SparkSession = SparkSession.builder.config(sparkConf).getOrCreate()

    import spark.implicits._

    // 從json中read獲得的是DataFrame
    val frame: DataFrame = spark.read.json("data/input/user/user.json")

    frame.createOrReplaceTempView("user")

    // 案例一:自定義一個簡單的函數測試
    spark.udf.register("addName", (x:String)=> "Name:"+x)

    spark.sql("select addName(name) from user").show()

    // 案例二:自定義一個弱類型聚合函數測試

    val udaf1 = new MyAgeAvgFunction

    spark.udf.register("avgAge", udaf1)

    spark.sql("select avgAge(age) from user").show()

    // 案例三:自定義一個強類型聚合函數測試

    val udaf2 = new MyAgeAvgClassFunction

    // 將聚合函數轉換爲查詢列
    val avgCol: TypedColumn[UserBean, Double] = udaf2.toColumn.name("aveAge")

    // 用強類型的Dataset的DSL風格的編程語法
    val userDS: Dataset[UserBean] = frame.as[UserBean]

    userDS.select(avgCol).show()

    spark.stop()
  }
}

/**
 * 自定義內聚函數(弱類型)
 */

class MyAgeAvgFunction extends UserDefinedAggregateFunction{

  // 輸入的數據結構
  override def inputSchema: StructType = {
    new StructType().add("age", LongType)
  }

  // 計算時的數據結構
  override def bufferSchema: StructType = {
    new StructType().add("sum", LongType).add("count", LongType)
  }

  // 函數返回的數據類型
  override def dataType: DataType = DoubleType

  // 函數是否穩定
  override def deterministic: Boolean = true

  // 計算前緩存區的初始化
  override def initialize(buffer: MutableAggregationBuffer): Unit = {
    // 沒有名稱,只有結構
    buffer(0) = 0L
    buffer(1) = 0L
  }

  // 根據查詢結果,更新緩存區的數據
  override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
    buffer(0) = buffer.getLong(0) + input.getLong(0)
    buffer(1) = buffer.getLong(1) + 1
  }

  // 多個節點的緩存區的合併
  override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
    buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
    buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
  }

  // 計算緩存區裏的東西,得最終返回結果
  override def evaluate(buffer: Row): Any = {
    buffer.getLong(0).toDouble / buffer.getLong(1)
  }
}


/**
 * 自定義內聚函數(強類型)
 */

case class UserBean (name : String, age : BigInt) // 文件讀取數字默認是BigInt
case class AvgBuffer(var sum: BigInt, var count: Int)

class MyAgeAvgClassFunction extends Aggregator[UserBean, AvgBuffer, Double] {

  // 初始化緩存區
  override def zero: AvgBuffer = {
    AvgBuffer(0, 0)
  }

  // 輸入數據和緩存區計算
  override def reduce(b: AvgBuffer, a: UserBean): AvgBuffer = {
    b.sum = b.sum + a.age
    b.count = b.count + 1
    // 返回b
    b
  }

  // 緩存區的合併
  override def merge(b1: AvgBuffer, b2: AvgBuffer): AvgBuffer = {
    b1.sum = b1.sum + b2.sum
    b1.count = b1.count + b2.count

    b1
  }

  // 計算返回值
  override def finish(reduction: AvgBuffer): Double = {
    reduction.sum.toDouble / reduction.count
  }

  override def bufferEncoder: Encoder[AvgBuffer] = Encoders.product

  override def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}
相關文章
相關標籤/搜索