函數的定義:給定一個數集A,對A施加一個對應的法則/映射f,記作:f(A),那麼能夠獲得另一個數集B,也就是能夠認爲B=f(A);那麼這個關係就叫作函數關係式,簡稱函數。網絡
三個重要因素:定義域A、值域B、對應的映射法則f。函數
常見函數有:常函數、一次函數、二次函數、冪函數、指數函數、對數函數。字體
import math import numpy as np import matplotlib.pyplot as plt x = np.arange(0.05,3,0.05) #常函數 y1 = [5 for i in x] plt.plot(x,y1,linewidth = 2,label = '常函數:y = 5') #一次函數 y2 =[2 * i + 1 for i in x ] plt.plot(x,y2,linewidth = 2,label = '一次函數:y = 2x + 1') #二次函數 y3 =[1.5 * i * i - 3 * i + 1 for i in x ] plt.plot(x,y3,linewidth = 2,label = '二次函數:y = 1.5$x^2$ -3x + 1') #冪函數 y4 =[math.pow(i,2) for i in x ] plt.plot(x,y4,linewidth = 2,label = '冪函數:y =$x^2$') #指數函數 y5 =[math.pow(2,i) for i in x ] plt.plot(x,y5,linewidth = 2,label = '指數函數:y = $2^x$') #對數函數 y6 =[math.log(i,2) for i in x ] plt.plot(x,y6,linewidth = 2,label = '對數函數:y = log2(x)') plt.legend(loc = 'lower right')#顯示圖例大小,其中loc表示位置的; plt.grid(False)## 顯示背景的網格線,False爲不顯示網絡圖 plt.show()
繪製的圖片中文沒法識別,能夠在配置文件font.sans-serif中添加SimHei、FangSong等中文字體spa
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False#解決保存圖像是負號'-'顯示爲方塊的問題
通常常見函數:3d
import numpy as np import matplotlib.pyplot as plt x1 = np.linspace(-5,5,100) y3 = [(2 * i + 1 )for i in x1] plt.plot(x1,y3,label = 'y=2x+10',color = 'b',linewidth = 2) y4 = [i*i for i in x1] plt.plot(x1,y4,label = 'y=x^2',color = 'g',linewidth = 2) y5 = [3 for i in x1] plt.plot(x1,y5,label = 'y=3',color = 'purple',linewidth = 2) plt.grid(True) plt.legend() plt.show()
import math import numpy as np import matplotlib.pyplot as plt x1 = np.linspace(-5,5,100) y5 = [3 * math.pow(i,3)for i in x1] plt.plot(x1,y5,label = 'y=3x^3',color = 'purple',linewidth = 2) y6 = [10/i for i in x1] plt.plot(x1,y6,label = 'y=10/x',color = 'k',linewidth = 2) plt.grid(True) plt.legend() plt.show()
三角函數:code
import numpy as np import matplotlib.pyplot as plt x = np.linspace(-4*np.pi,4*np.pi,100) y = [np.sin(i)for i in x] plt.plot(x,y,label = 'y=sinx',color = 'g',linewidth = 2) y1 = [np.cos(i)for i in x] plt.plot(x,y1,label = 'y=cosx',color = 'r',linewidth = 2) plt.grid(True) plt.legend(loc='upper right') plt.xlim(-15,15) plt.show()
對數函數:blog
import math import numpy as np import matplotlib.pyplot as plt x = np.arange(0.05,3,0.05) y1 = [math.log(i,0.5)for i in x] y2 = [math.log(i,math.e)for i in x]#是以e爲底的對數 y3 = [math.log(i,5)for i in x] y4 = [math.log(i,10)for i in x] plt.plot(x,y1,label = 'log0.5(x)',color = 'y',linewidth = 2) plt.plot(x,y2,label = 'loge(x)',color = 'b',linewidth = 2) plt.plot(x,y3,label = 'log5(x)',color = 'g',linewidth = 2) plt.plot(x,y4,label = 'log10(x)',color = 'r',linewidth = 2) plt.plot([1,1],[-3,5],'-',color ='#999999',linewidth = 2) plt.legend(loc='lower right') plt.xlim(0,3) plt.grid(True) plt.show()