自從在園子裏,發表了兩篇如何基於Netty構建RPC服務器的文章:談談如何使用Netty開發實現高性能的RPC服務器、Netty實現高性能RPC服務器優化篇之消息序列化 以後,收到了不少同行、園友們熱情的反饋和若干個優化建議,因而利用閒暇時間,打算對原來NettyRPC中不合理的模塊進行重構,而且加強了一些特性,主要的優化點以下:html
如今重點整理一下重構思路、經驗,記錄下來。對應源代碼代碼,你們能夠查看個人開源github:https://github.com/tang-jie/NettyRPC 項目中的NettyRPC 2.0目錄。java
在最先的NettyRPC消息編解碼插件中,我使用的是:JDK原生的對象序列化(ObjectOutputStream/ObjectInputStream)、Kryo、Hessian這三種方式,後續有園友向我提議,能夠引入Protostuff序列化方式。通過查閱網絡的相關資料,Protostuff基於Google protobuf,可是提供了更多的功能和更簡易的用法。原生的protobuff是須要數據結構的預編譯過程,須要編寫.proto格式的配置文件,再經過protobuf提供的工具翻譯成目標語言代碼,而Protostuff則省略了這個預編譯的過程。如下是Java主流序列化框架的性能測試結果(圖片來自網絡):git
能夠發現,Protostuff序列化確實是一種很高效的序列化框架,相比起其餘主流的序列化、反序列化框架,其序列化性能可見一斑。若是用它來進行RPC消息的編碼、解碼工做,再合適不過了。如今貼出具體的Protostuff序列化編解碼器的實現代碼。github
首先是定義Schema,這個是由於Protostuff-Runtime實現了無需預編譯對java bean進行protobuf序列化/反序列化的能力。咱們能夠把運行時的Schema緩存起來,提升序列化性能。具體實現類SchemaCache代碼以下:spring
package com.newlandframework.rpc.serialize.protostuff; import com.dyuproject.protostuff.Schema; import com.dyuproject.protostuff.runtime.RuntimeSchema; import com.google.common.cache.Cache; import com.google.common.cache.CacheBuilder; import java.util.concurrent.ExecutionException; import java.util.concurrent.Callable; import java.util.concurrent.TimeUnit; /** * @author tangjie<https://github.com/tang-jie> * @filename:SchemaCache.java * @description:SchemaCache功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class SchemaCache { private static class SchemaCacheHolder { private static SchemaCache cache = new SchemaCache(); } public static SchemaCache getInstance() { return SchemaCacheHolder.cache; } private Cache<Class<?>, Schema<?>> cache = CacheBuilder.newBuilder() .maximumSize(1024).expireAfterWrite(1, TimeUnit.HOURS) .build(); private Schema<?> get(final Class<?> cls, Cache<Class<?>, Schema<?>> cache) { try { return cache.get(cls, new Callable<RuntimeSchema<?>>() { public RuntimeSchema<?> call() throws Exception { return RuntimeSchema.createFrom(cls); } }); } catch (ExecutionException e) { return null; } } public Schema<?> get(final Class<?> cls) { return get(cls, cache); } }
而後定義真正的Protostuff序列化、反序列化類,它實現了RpcSerialize接口的方法:apache
package com.newlandframework.rpc.serialize.protostuff; import com.dyuproject.protostuff.LinkedBuffer; import com.dyuproject.protostuff.ProtostuffIOUtil; import com.dyuproject.protostuff.Schema; import java.io.InputStream; import java.io.OutputStream; import com.newlandframework.rpc.model.MessageRequest; import com.newlandframework.rpc.model.MessageResponse; import com.newlandframework.rpc.serialize.RpcSerialize; import org.objenesis.Objenesis; import org.objenesis.ObjenesisStd; /** * @author tangjie<https://github.com/tang-jie> * @filename:ProtostuffSerialize.java * @description:ProtostuffSerialize功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class ProtostuffSerialize implements RpcSerialize { private static SchemaCache cachedSchema = SchemaCache.getInstance(); private static Objenesis objenesis = new ObjenesisStd(true); private boolean rpcDirect = false; public boolean isRpcDirect() { return rpcDirect; } public void setRpcDirect(boolean rpcDirect) { this.rpcDirect = rpcDirect; } private static <T> Schema<T> getSchema(Class<T> cls) { return (Schema<T>) cachedSchema.get(cls); } public Object deserialize(InputStream input) { try { Class cls = isRpcDirect() ? MessageRequest.class : MessageResponse.class; Object message = (Object) objenesis.newInstance(cls); Schema<Object> schema = getSchema(cls); ProtostuffIOUtil.mergeFrom(input, message, schema); return message; } catch (Exception e) { throw new IllegalStateException(e.getMessage(), e); } } public void serialize(OutputStream output, Object object) { Class cls = (Class) object.getClass(); LinkedBuffer buffer = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE); try { Schema schema = getSchema(cls); ProtostuffIOUtil.writeTo(output, object, schema, buffer); } catch (Exception e) { throw new IllegalStateException(e.getMessage(), e); } finally { buffer.clear(); } } }
一樣爲了提升Protostuff序列化/反序列化類的利用效率,咱們能夠對其進行池化處理,而不要頻繁的建立、銷燬對象。如今給出Protostuff池化處理類:ProtostuffSerializeFactory、ProtostuffSerializePool的實現代碼:數組
package com.newlandframework.rpc.serialize.protostuff; import org.apache.commons.pool2.BasePooledObjectFactory; import org.apache.commons.pool2.PooledObject; import org.apache.commons.pool2.impl.DefaultPooledObject; /** * @author tangjie<https://github.com/tang-jie> * @filename:ProtostuffSerializeFactory.java * @description:ProtostuffSerializeFactory功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class ProtostuffSerializeFactory extends BasePooledObjectFactory<ProtostuffSerialize> { public ProtostuffSerialize create() throws Exception { return createProtostuff(); } public PooledObject<ProtostuffSerialize> wrap(ProtostuffSerialize hessian) { return new DefaultPooledObject<ProtostuffSerialize>(hessian); } private ProtostuffSerialize createProtostuff() { return new ProtostuffSerialize(); } }
package com.newlandframework.rpc.serialize.protostuff; import org.apache.commons.pool2.impl.GenericObjectPool; import org.apache.commons.pool2.impl.GenericObjectPoolConfig; /** * @author tangjie<https://github.com/tang-jie> * @filename:ProtostuffSerializePool.java * @description:ProtostuffSerializePool功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class ProtostuffSerializePool { private GenericObjectPool<ProtostuffSerialize> ProtostuffPool; volatile private static ProtostuffSerializePool poolFactory = null; private ProtostuffSerializePool() { ProtostuffPool = new GenericObjectPool<ProtostuffSerialize>(new ProtostuffSerializeFactory()); } public static ProtostuffSerializePool getProtostuffPoolInstance() { if (poolFactory == null) { synchronized (ProtostuffSerializePool.class) { if (poolFactory == null) { poolFactory = new ProtostuffSerializePool(); } } } return poolFactory; } public ProtostuffSerializePool(final int maxTotal, final int minIdle, final long maxWaitMillis, final long minEvictableIdleTimeMillis) { ProtostuffPool = new GenericObjectPool<ProtostuffSerialize>(new ProtostuffSerializeFactory()); GenericObjectPoolConfig config = new GenericObjectPoolConfig(); config.setMaxTotal(maxTotal); config.setMinIdle(minIdle); config.setMaxWaitMillis(maxWaitMillis); config.setMinEvictableIdleTimeMillis(minEvictableIdleTimeMillis); ProtostuffPool.setConfig(config); } public ProtostuffSerialize borrow() { try { return getProtostuffPool().borrowObject(); } catch (final Exception ex) { ex.printStackTrace(); return null; } } public void restore(final ProtostuffSerialize object) { getProtostuffPool().returnObject(object); } public GenericObjectPool<ProtostuffSerialize> getProtostuffPool() { return ProtostuffPool; } }
如今有了Protostuff池化處理類,咱們就經過它來實現NettyRPC的編碼、解碼接口,達到對RPC消息編碼、解碼的目的。首先是Protostuff方式實現的RPC解碼器代碼:緩存
package com.newlandframework.rpc.serialize.protostuff; import com.newlandframework.rpc.serialize.MessageCodecUtil; import com.newlandframework.rpc.serialize.MessageDecoder; /** * @author tangjie<https://github.com/tang-jie> * @filename:ProtostuffDecoder.java * @description:ProtostuffDecoder功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class ProtostuffDecoder extends MessageDecoder { public ProtostuffDecoder(MessageCodecUtil util) { super(util); } }
而後是Protostuff方式實現的RPC編碼器代碼:服務器
package com.newlandframework.rpc.serialize.protostuff; import com.newlandframework.rpc.serialize.MessageCodecUtil; import com.newlandframework.rpc.serialize.MessageEncoder; /** * @author tangjie<https://github.com/tang-jie> * @filename:ProtostuffEncoder.java * @description:ProtostuffEncoder功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class ProtostuffEncoder extends MessageEncoder { public ProtostuffEncoder(MessageCodecUtil util) { super(util); } }
最後重構出Protostuff方式的RPC編碼、解碼器工具類ProtostuffCodecUtil的實現代碼:網絡
package com.newlandframework.rpc.serialize.protostuff; import com.google.common.io.Closer; import com.newlandframework.rpc.serialize.MessageCodecUtil; import io.netty.buffer.ByteBuf; import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.IOException; /** * @author tangjie<https://github.com/tang-jie> * @filename:ProtostuffCodecUtil.java * @description:ProtostuffCodecUtil功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class ProtostuffCodecUtil implements MessageCodecUtil { private static Closer closer = Closer.create(); private ProtostuffSerializePool pool = ProtostuffSerializePool.getProtostuffPoolInstance(); private boolean rpcDirect = false; public boolean isRpcDirect() { return rpcDirect; } public void setRpcDirect(boolean rpcDirect) { this.rpcDirect = rpcDirect; } public void encode(final ByteBuf out, final Object message) throws IOException { try { ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream(); closer.register(byteArrayOutputStream); ProtostuffSerialize protostuffSerialization = pool.borrow(); protostuffSerialization.serialize(byteArrayOutputStream, message); byte[] body = byteArrayOutputStream.toByteArray(); int dataLength = body.length; out.writeInt(dataLength); out.writeBytes(body); pool.restore(protostuffSerialization); } finally { closer.close(); } } public Object decode(byte[] body) throws IOException { try { ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream(body); closer.register(byteArrayInputStream); ProtostuffSerialize protostuffSerialization = pool.borrow(); protostuffSerialization.setRpcDirect(rpcDirect); Object obj = protostuffSerialization.deserialize(byteArrayInputStream); pool.restore(protostuffSerialization); return obj; } finally { closer.close(); } } }
這樣就使得NettyRPC的消息序列化又多了一種方式,進一步加強了其RPC消息網絡傳輸的能力。
其次是優化了NettyRPC服務端的線程模型,使得RPC消息處理線程池對任務的隊列容器的支持更加多樣。具體RPC異步處理線程池RpcThreadPool的代碼以下:
package com.newlandframework.rpc.parallel; import com.newlandframework.rpc.core.RpcSystemConfig; import com.newlandframework.rpc.parallel.policy.AbortPolicy; import com.newlandframework.rpc.parallel.policy.BlockingPolicy; import com.newlandframework.rpc.parallel.policy.CallerRunsPolicy; import com.newlandframework.rpc.parallel.policy.DiscardedPolicy; import com.newlandframework.rpc.parallel.policy.RejectedPolicy; import com.newlandframework.rpc.parallel.policy.RejectedPolicyType; import java.util.concurrent.Executor; import java.util.concurrent.BlockingQueue; import java.util.concurrent.ArrayBlockingQueue; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.SynchronousQueue; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; import java.util.concurrent.RejectedExecutionHandler; /** * @author tangjie<https://github.com/tang-jie> * @filename:RpcThreadPool.java * @description:RpcThreadPool功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class RpcThreadPool { private static RejectedExecutionHandler createPolicy() { RejectedPolicyType rejectedPolicyType = RejectedPolicyType.fromString(System.getProperty(RpcSystemConfig.SystemPropertyThreadPoolRejectedPolicyAttr, "AbortPolicy")); switch (rejectedPolicyType) { case BLOCKING_POLICY: return new BlockingPolicy(); case CALLER_RUNS_POLICY: return new CallerRunsPolicy(); case ABORT_POLICY: return new AbortPolicy(); case REJECTED_POLICY: return new RejectedPolicy(); case DISCARDED_POLICY: return new DiscardedPolicy(); } return null; } private static BlockingQueue<Runnable> createBlockingQueue(int queues) { BlockingQueueType queueType = BlockingQueueType.fromString(System.getProperty(RpcSystemConfig.SystemPropertyThreadPoolQueueNameAttr, "LinkedBlockingQueue")); switch (queueType) { case LINKED_BLOCKING_QUEUE: return new LinkedBlockingQueue<Runnable>(); case ARRAY_BLOCKING_QUEUE: return new ArrayBlockingQueue<Runnable>(RpcSystemConfig.PARALLEL * queues); case SYNCHRONOUS_QUEUE: return new SynchronousQueue<Runnable>(); } return null; } public static Executor getExecutor(int threads, int queues) { String name = "RpcThreadPool"; return new ThreadPoolExecutor(threads, threads, 0, TimeUnit.MILLISECONDS, createBlockingQueue(queues), new NamedThreadFactory(name, true), createPolicy()); } }
其中建立線程池方法getExecutor是依賴JDK自帶的線程ThreadPoolExecutor的實現,參考JDK的幫助文檔,能夠發現其中的一種ThreadPoolExecutor構造方法重載實現的版本:
參數的具體含義以下:
NettyRPC的線程池支持的任務隊列類型主要有如下三種:
NettyRPC的線程池模型,當遇到線程池也沒法處理的情形的時候,具體的應對措施策略主要有:
通過詳細的介紹了線程池參數的具體內容以後,下面我就詳細說一下,NettyRPC的線程池RpcThreadPool的工做流程:
NettyRPC中默認的線程池設置是把corePoolSize、maximumPoolSize都設置成16,任務隊列設置成無界鏈表構成的阻塞隊列。在應用中要根據實際的壓力、吞吐量對NettyRPC的線程池參數進行合理的規劃。目前NettyRPC暴露了一個JMX接口,JMX是「Java管理擴展的(Java Management Extensions)」的縮寫,是一種相似J2EE的規範,這樣就能夠靈活的擴展系統的監控、管理功能。實時監控RPC服務器線程池任務的執行狀況,具體JMX監控度量線程池關鍵指標代碼實現以下:
package com.newlandframework.rpc.parallel.jmx; import org.springframework.jmx.export.annotation.ManagedOperation; import org.springframework.jmx.export.annotation.ManagedResource; /** * @author tangjie<https://github.com/tang-jie> * @filename:ThreadPoolStatus.java * @description:ThreadPoolStatus功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/13 */ @ManagedResource public class ThreadPoolStatus { private int poolSize; private int activeCount; private int corePoolSize; private int maximumPoolSize; private int largestPoolSize; private long taskCount; private long completedTaskCount; @ManagedOperation public int getPoolSize() { return poolSize; } @ManagedOperation public void setPoolSize(int poolSize) { this.poolSize = poolSize; } @ManagedOperation public int getActiveCount() { return activeCount; } @ManagedOperation public void setActiveCount(int activeCount) { this.activeCount = activeCount; } @ManagedOperation public int getCorePoolSize() { return corePoolSize; } @ManagedOperation public void setCorePoolSize(int corePoolSize) { this.corePoolSize = corePoolSize; } @ManagedOperation public int getMaximumPoolSize() { return maximumPoolSize; } @ManagedOperation public void setMaximumPoolSize(int maximumPoolSize) { this.maximumPoolSize = maximumPoolSize; } @ManagedOperation public int getLargestPoolSize() { return largestPoolSize; } @ManagedOperation public void setLargestPoolSize(int largestPoolSize) { this.largestPoolSize = largestPoolSize; } @ManagedOperation public long getTaskCount() { return taskCount; } @ManagedOperation public void setTaskCount(long taskCount) { this.taskCount = taskCount; } @ManagedOperation public long getCompletedTaskCount() { return completedTaskCount; } @ManagedOperation public void setCompletedTaskCount(long completedTaskCount) { this.completedTaskCount = completedTaskCount; } }
線程池狀態監控類:ThreadPoolStatus,具體監控的指標以下:
其中corePoolSize、maximumPoolSize具體含義上文已經詳細講述,這裏就不具體展開。
NettyRPC線程池監控JMX接口:ThreadPoolMonitorProvider,JMX經過JNDI-RMI的方式進行遠程鏈接通信,具體實現方式以下:
package com.newlandframework.rpc.parallel.jmx; import com.newlandframework.rpc.netty.MessageRecvExecutor; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.ComponentScan; import org.springframework.context.annotation.Configuration; import org.springframework.context.annotation.DependsOn; import org.springframework.context.annotation.EnableMBeanExport; import org.springframework.jmx.support.ConnectorServerFactoryBean; import org.springframework.jmx.support.MBeanServerConnectionFactoryBean; import org.springframework.jmx.support.MBeanServerFactoryBean; import org.springframework.remoting.rmi.RmiRegistryFactoryBean; import org.apache.commons.lang3.StringUtils; import javax.management.MBeanServerConnection; import javax.management.MalformedObjectNameException; import javax.management.ObjectName; import javax.management.ReflectionException; import javax.management.MBeanException; import javax.management.InstanceNotFoundException; import java.io.IOException; /** * @author tangjie<https://github.com/tang-jie> * @filename:ThreadPoolMonitorProvider.java * @description:ThreadPoolMonitorProvider功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/13 */ @Configuration @EnableMBeanExport @ComponentScan("com.newlandframework.rpc.parallel.jmx") public class ThreadPoolMonitorProvider { public final static String DELIMITER = ":"; public static String url; public static String jmxPoolSizeMethod = "setPoolSize"; public static String jmxActiveCountMethod = "setActiveCount"; public static String jmxCorePoolSizeMethod = "setCorePoolSize"; public static String jmxMaximumPoolSizeMethod = "setMaximumPoolSize"; public static String jmxLargestPoolSizeMethod = "setLargestPoolSize"; public static String jmxTaskCountMethod = "setTaskCount"; public static String jmxCompletedTaskCountMethod = "setCompletedTaskCount"; @Bean public ThreadPoolStatus threadPoolStatus() { return new ThreadPoolStatus(); } @Bean public MBeanServerFactoryBean mbeanServer() { return new MBeanServerFactoryBean(); } @Bean public RmiRegistryFactoryBean registry() { return new RmiRegistryFactoryBean(); } @Bean @DependsOn("registry") public ConnectorServerFactoryBean connectorServer() throws MalformedObjectNameException { MessageRecvExecutor ref = MessageRecvExecutor.getInstance(); String ipAddr = StringUtils.isNotEmpty(ref.getServerAddress()) ? StringUtils.substringBeforeLast(ref.getServerAddress(), DELIMITER) : "localhost"; url = "service:jmx:rmi://" + ipAddr + "/jndi/rmi://" + ipAddr + ":1099/nettyrpcstatus"; System.out.println("NettyRPC JMX MonitorURL : [" + url + "]"); ConnectorServerFactoryBean connectorServerFactoryBean = new ConnectorServerFactoryBean(); connectorServerFactoryBean.setObjectName("connector:name=rmi"); connectorServerFactoryBean.setServiceUrl(url); return connectorServerFactoryBean; } public static void monitor(ThreadPoolStatus status) throws IOException, MalformedObjectNameException, ReflectionException, MBeanException, InstanceNotFoundException { MBeanServerConnectionFactoryBean mBeanServerConnectionFactoryBean = new MBeanServerConnectionFactoryBean(); mBeanServerConnectionFactoryBean.setServiceUrl(url); mBeanServerConnectionFactoryBean.afterPropertiesSet(); MBeanServerConnection connection = mBeanServerConnectionFactoryBean.getObject(); ObjectName objectName = new ObjectName("com.newlandframework.rpc.parallel.jmx:name=threadPoolStatus,type=ThreadPoolStatus"); connection.invoke(objectName, jmxPoolSizeMethod, new Object[]{status.getPoolSize()}, new String[]{int.class.getName()}); connection.invoke(objectName, jmxActiveCountMethod, new Object[]{status.getActiveCount()}, new String[]{int.class.getName()}); connection.invoke(objectName, jmxCorePoolSizeMethod, new Object[]{status.getCorePoolSize()}, new String[]{int.class.getName()}); connection.invoke(objectName, jmxMaximumPoolSizeMethod, new Object[]{status.getMaximumPoolSize()}, new String[]{int.class.getName()}); connection.invoke(objectName, jmxLargestPoolSizeMethod, new Object[]{status.getLargestPoolSize()}, new String[]{int.class.getName()}); connection.invoke(objectName, jmxTaskCountMethod, new Object[]{status.getTaskCount()}, new String[]{long.class.getName()}); connection.invoke(objectName, jmxCompletedTaskCountMethod, new Object[]{status.getCompletedTaskCount()}, new String[]{long.class.getName()}); } }
NettyRPC服務器啓動成功以後,就能夠經過JMX接口進行監控:能夠打開jconsole,而後輸入URL:service:jmx:rmi://127.0.0.1/jndi/rmi://127.0.0.1:1099/nettyrpcstatus,用戶名、密碼默認爲空,點擊鏈接按鈕。
當有客戶端進行RPC請求的時候,經過JMX能夠看到以下的監控界面:
這個時候點擊NettyRPC線程池各個監控指標的按鈕,就能夠直觀的看到NettyRPC實際運行中,線程池的主要參數指標的實時監控。好比點擊:getCompletedTaskCount,想查看一下目前已經完成的線程任務總數指標。具體狀況以下圖所示:
能夠看到,目前已經處理了40280筆RPC請求。這樣,咱們就能夠準實時監控NettyRPC線程池參數設置、容量規劃是否合理,以便及時做出調整,合理的最大程度利用軟硬件資源。
最後通過重構以後,NettyRPC服務端的Spring配置(NettyRPC/NettyRPC 2.0/main/resources/rpc-invoke-config-server.xml)以下:
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xmlns:nettyrpc="http://www.newlandframework.com/nettyrpc" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd http://www.newlandframework.com/nettyrpc http://www.newlandframework.com/nettyrpc/nettyrpc.xsd"> <!--加載rpc服務器的ip地址、端口信息--> <context:property-placeholder location="classpath:rpc-server.properties"/> <!--定義rpc服務接口--> <nettyrpc:service id="demoAddService" interfaceName="com.newlandframework.rpc.services.AddCalculate" ref="calcAddService"></nettyrpc:service> <nettyrpc:service id="demoMultiService" interfaceName="com.newlandframework.rpc.services.MultiCalculate" ref="calcMultiService"></nettyrpc:service> <!--註冊rpc服務器,並經過protocol指定序列化協議--> <nettyrpc:registry id="rpcRegistry" ipAddr="${rpc.server.addr}" protocol="PROTOSTUFFSERIALIZE"></nettyrpc:registry> <!--rpc服務實現類聲明--> <bean id="calcAddService" class="com.newlandframework.rpc.services.impl.AddCalculateImpl"></bean> <bean id="calcMultiService" class="com.newlandframework.rpc.services.impl.MultiCalculateImpl"></bean> </beans>
經過nettyrpc:service標籤訂義rpc服務器支持的服務接口,這裏的樣例聲明瞭當前的rpc服務器提供了加法計算、乘法計算兩種服務給客戶端進行調用。具體經過Spring自定義標籤的實現,你們能夠自行參考github:NettyRPC/NettyRPC 2.0/main/java/com/newlandframework/rpc/spring(路徑/包)中的實現代碼,代碼比較多得利用到了Spring框架的特性,但願你們能自行理解和分析。
而後經過bean標籤聲明瞭具體加法計算、乘法計算接口對應的實現類,都統一放在com.newlandframework.rpc.services包之中。
最後經過nettyrpc:registry註冊了rpc服務器,ipAddr屬性定義了該rpc服務器對應的ip/端口信息。protocol用來指定,當前rpc服務器支持的消息序列化協議類型。
目前已經實現的類型有:JDK原生的對象序列化(ObjectOutputStream/ObjectInputStream)、Kryo、Hessian、Protostuff一共四種序列化方式。
配置完成rpc-invoke-config-server.xml以後,就能夠啓動RPC服務器Main函數入口:com.newlandframework.rpc.boot.RpcServerStarter。經過Maven打包、部署在(Red Hat Enterprise Linux Server release 5.7 (Tikanga) 64位系統,其內核版本號:Kernel 2.6.18-274.el5 on an x86_64),能夠啓動NettyRPC,若是一切正常的話,在CRT終端上會顯示以下輸出:
這個時候再進行客戶端的Spring配置(NettyRPC/NettyRPC 2.0/test/resources/rpc-invoke-config-client.xml)。
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xmlns:nettyrpc="http://www.newlandframework.com/nettyrpc" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd http://www.newlandframework.com/nettyrpc http://www.newlandframework.com/nettyrpc/nettyrpc.xsd"> <!--加載RPC服務端對應的ip地址、端口信息--> <context:property-placeholder location="classpath:rpc-server.properties"/> <!--客戶端調用的RPC服務信息(加法計算、乘法計算服務)--> <nettyrpc:reference id="addCalc" interfaceName="com.newlandframework.rpc.services.AddCalculate" protocol="PROTOSTUFFSERIALIZE" ipAddr="${rpc.server.addr}"/> <nettyrpc:reference id="multiCalc" interfaceName="com.newlandframework.rpc.services.MultiCalculate" protocol="PROTOSTUFFSERIALIZE" ipAddr="${rpc.server.addr}"/> </beans>
其中加法計算、乘法計算的demo代碼以下:
package com.newlandframework.rpc.services; /** * @author tangjie<https://github.com/tang-jie> * @filename:Calculate.java * @description:Calculate功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public interface AddCalculate { //兩數相加 int add(int a, int b); }
package com.newlandframework.rpc.services.impl; import com.newlandframework.rpc.services.AddCalculate; /** * @author tangjie<https://github.com/tang-jie> * @filename:CalculateImpl.java * @description:CalculateImpl功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class AddCalculateImpl implements AddCalculate { //兩數相加 public int add(int a, int b) { return a + b; } }
package com.newlandframework.rpc.services; /** * @author tangjie<https://github.com/tang-jie> * @filename:Calculate.java * @description:Calculate功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public interface MultiCalculate { //兩數相乘 int multi(int a, int b); }
package com.newlandframework.rpc.services.impl; import com.newlandframework.rpc.services.MultiCalculate; /** * @author tangjie<https://github.com/tang-jie> * @filename:CalculateImpl.java * @description:CalculateImpl功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class MultiCalculateImpl implements MultiCalculate { //兩數相乘 public int multi(int a, int b) { return a * b; } }
值得注意的是客戶端NettyRPC的Spring配置除了指定調用遠程RPC的服務服務信息以外,還必須配置遠程RPC服務端對應的ip地址、端口信息、協議類型這些要素,並且必須和RPC服務端保持一致,這樣才能正常的進行消息的編碼、解碼工做。
如今咱們就模擬1W個瞬時併發的加法、乘法計算請求,一共2W筆請求操做,調用遠程RPC服務器上的計算模塊,咱們默認採用protostuff序列化方式進行RPC消息的編碼、解碼。注意,測試代碼的樣例基於1W筆瞬時併發計算請求,不是1W筆循環進行計算請求,這個是衡量RPC服務器吞吐量的一個重要指標,所以這裏的測試樣例是基於CountDownLatch進行編寫的,類java.util.concurrent.CountDownLatch是一個同步輔助類,在完成一組正在其餘線程中執行的操做以前,它容許一個或多個線程一直等待。這裏是加法計算RPC請求、乘法計算RPC請求,在RPC客戶端分別先啓動1W個線程,這個時候先掛起,而後等待請求信號,瞬時發起RPC請求。具體代碼以下:
首先是加法計算併發請求類AddCalcParallelRequestThread:
package com.newlandframework.test; import com.newlandframework.rpc.services.AddCalculate; import java.util.concurrent.CountDownLatch; import java.util.logging.Level; import java.util.logging.Logger; /** * @author tangjie<https://github.com/tang-jie> * @filename:AddCalcParallelRequestThread.java * @description:AddCalcParallelRequestThread功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class AddCalcParallelRequestThread implements Runnable { private CountDownLatch signal; private CountDownLatch finish; private int taskNumber = 0; private AddCalculate calc; public AddCalcParallelRequestThread(AddCalculate calc, CountDownLatch signal, CountDownLatch finish, int taskNumber) { this.signal = signal; this.finish = finish; this.taskNumber = taskNumber; this.calc = calc; } public void run() { try { //加法計算線程,先掛起,等待請求信號 signal.await(); //調用遠程RPC服務器的加法計算方法模塊 int add = calc.add(taskNumber, taskNumber); System.out.println("calc add result:[" + add + "]"); finish.countDown(); } catch (InterruptedException ex) { Logger.getLogger(AddCalcParallelRequestThread.class.getName()).log(Level.SEVERE, null, ex); } } }
其次是乘法計算併發請求類MultiCalcParallelRequestThread:
package com.newlandframework.test; import com.newlandframework.rpc.services.MultiCalculate; import java.util.concurrent.CountDownLatch; import java.util.logging.Level; import java.util.logging.Logger; /** * @author tangjie<https://github.com/tang-jie> * @filename:MultiCalcParallelRequestThread.java * @description:MultiCalcParallelRequestThread功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class MultiCalcParallelRequestThread implements Runnable { private CountDownLatch signal; private CountDownLatch finish; private int taskNumber = 0; private MultiCalculate calc; public MultiCalcParallelRequestThread(MultiCalculate calc, CountDownLatch signal, CountDownLatch finish, int taskNumber) { this.signal = signal; this.finish = finish; this.taskNumber = taskNumber; this.calc = calc; } public void run() { try { //乘法計算線程,先掛起,等待請求信號 signal.await(); //調用遠程RPC服務器的乘法計算方法模塊 int multi = calc.multi(taskNumber, taskNumber); System.out.println("calc multi result:[" + multi + "]"); finish.countDown(); } catch (InterruptedException ex) { Logger.getLogger(MultiCalcParallelRequestThread.class.getName()).log(Level.SEVERE, null, ex); } } }
如今寫出一個調用的測試客戶端RpcParallelTest,測試RPC服務器的性能,以及是否正確計算出最終的結果。測試客戶端RpcParallelTest的具體代碼以下:
package com.newlandframework.test; import java.util.concurrent.CountDownLatch; import java.util.concurrent.TimeUnit; import com.newlandframework.rpc.services.AddCalculate; import com.newlandframework.rpc.services.MultiCalculate; import org.apache.commons.lang3.time.StopWatch; import org.springframework.context.support.ClassPathXmlApplicationContext; /** * @author tangjie<https://github.com/tang-jie> * @filename:RpcParallelTest.java * @description:RpcParallelTest功能模塊 * @blogs http://www.cnblogs.com/jietang/ * @since 2016/10/7 */ public class RpcParallelTest { public static void parallelAddCalcTask(AddCalculate calc, int parallel) throws InterruptedException { //開始計時 StopWatch sw = new StopWatch(); sw.start(); CountDownLatch signal = new CountDownLatch(1); CountDownLatch finish = new CountDownLatch(parallel); for (int index = 0; index < parallel; index++) { AddCalcParallelRequestThread client = new AddCalcParallelRequestThread(calc, signal, finish, index); new Thread(client).start(); } signal.countDown(); finish.await(); sw.stop(); String tip = String.format("加法計算RPC調用總共耗時: [%s] 毫秒", sw.getTime()); System.out.println(tip); } public static void parallelMultiCalcTask(MultiCalculate calc, int parallel) throws InterruptedException { //開始計時 StopWatch sw = new StopWatch(); sw.start(); CountDownLatch signal = new CountDownLatch(1); CountDownLatch finish = new CountDownLatch(parallel); for (int index = 0; index < parallel; index++) { MultiCalcParallelRequestThread client = new MultiCalcParallelRequestThread(calc, signal, finish, index); new Thread(client).start(); } signal.countDown(); finish.await(); sw.stop(); String tip = String.format("乘法計算RPC調用總共耗時: [%s] 毫秒", sw.getTime()); System.out.println(tip); } public static void addTask(AddCalculate calc, int parallel) throws InterruptedException { RpcParallelTest.parallelAddCalcTask(calc, parallel); TimeUnit.MILLISECONDS.sleep(30); } public static void multiTask(MultiCalculate calc, int parallel) throws InterruptedException { RpcParallelTest.parallelMultiCalcTask(calc, parallel); TimeUnit.MILLISECONDS.sleep(30); } public static void main(String[] args) throws Exception { //並行度10000 int parallel = 10000; //加載Spring配置信息 ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext("classpath:rpc-invoke-config-client.xml"); //併發進行RPC加法計算、乘法計算請求 addTask((AddCalculate) context.getBean("addCalc"), parallel); multiTask((MultiCalculate) context.getBean("multiCalc"), parallel); System.out.printf("[author tangjie] Netty RPC Server 消息協議序列化併發驗證結束!\n\n"); context.destroy(); } }
Netty RPC客戶端運行狀況,具體截圖以下:下面是開始收到RPC服務器加法計算的結果截圖。
好了,加法RPC請求計算完畢,控制檯打印出請求耗時。
接着是調用RPC並行乘法計算請求,一樣,控制檯上也打印出請求耗時。
接着RPC的客戶端運行完畢、退出,咱們繼續看下NettyRPC服務端的運行截圖:
能夠發現,NettyRPC的服務端確實都收到了來自客戶端發起的RPC計算請求,給每一個RPC消息標識出了惟一的消息編碼,並進行了RPC計算處理以後,成功的把消息應答給了客戶端。
通過一系列的模塊重構,終於將NettyRPC從新升級了一下,通過此次重構工做,感受本身對Netty、Spring、Java線程模型的瞭解更加深刻了,不積跬步無以致千里,千里之行始於足下。學習靠的就是這樣一點一滴的重複積累,才能將本身的能力提高一個臺階。
原創文章,加上本人才疏學淺,文筆有限,本文中有說得不對的地方,望各位同行不吝賜教。文中有忽略的地方但願讀者能夠補充,錯誤的地方還望斧正。
最後附上NettyRPC的開源項目地址:https://github.com/tang-jie/NettyRPC 中的NettyRPC 2.0項目。
感謝你們耐心閱讀NettyRPC系列文章,若是本文對你有幫助,請點下推薦吧!