函數式編程之 Python

  1 函數式編程概述
  
  前提:函數在 Python 中是⼀等對象
  
  工具:built-in ⾼階函數;lambda 函數;operator 模塊;functools 模塊
  
  模式:閉包與裝飾器
  
  替代:⽤用 List Comprehension 可輕鬆替代 map 和 filter(reduce 替代起來⽐比較困難)
  
  原則:No Side Effect
  
  何爲 No Side Effect? 函數的全部功能就僅僅是返回一個新的值而已,沒有其餘行爲,尤爲是不得修改外部變量。因⽽,各個獨⽴的部分的執⾏順序能夠隨意打亂,帶來執⾏順序上的⾃自使得⼀系列新的特性得以實現:⽆鎖的併發;惰性求值;編譯器器級別的性能優化等
  
  1.1 程序的狀態與命令式編程
  
  程序的狀態首先包含了當前定義的所有變量
  
  有了程序的狀態,咱們的程序才能不斷往前推動
  
  命令式編程,就是經過不斷修改變量的值,來保存當前運⾏的狀態,來步步推動
  
  1.2 函數式編程
  
  經過函數來保存程序的狀態(經過函數建立新的參數和返回值來保存狀態)
  
  函數一層層的疊加起來,每一個函數的參數或返回值表明了⼀箇中間狀態
  
  命令式編程⾥一次變量值的修改,在函數式編程⾥變成了⼀個函數的轉換
  
  最天然的方式:遞歸
  
  2 一等函數
  
  一等對象的定義:
  
  在運⾏時建立
  
  能賦值給變量或數據結構中的元素
  
  能做爲參數傳給函數
  
  能做爲函數的返回結果
  
  Python 中,全部函數的都是一等對象,簡稱爲一等函數
  
  2.1 高階函數
  
  定義:接受函數爲參數,或把函數做爲返回結果的函數
  
  2.1.1 map 映射
  
  map() 是 Python 內置的高階函數,它接收一個函數 f 和一個可迭代對象,並經過把函數 f 依次做用在 可迭代對象 的每一個元素上,並返回一個新的可迭代對象。
  
  def f(x):
  
  return x * x
  
  print('map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])):',
  
  list(map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])))
  
  show:
  
  map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])): [1, 4, 9, 16, 25, 36, 49, 64, 81]
  
  替代方案:
  
  [x*x for x in range(1,10)]
  
  def format_name(s):
  
  s1 = s[0:1].upper() + s[1:].lower()
  
  return s1
  
  print("map(format_name, ['adam', 'LISA', 'barT']):",
  
  list(map(format_name, www.mhylpt.com['adam', 'LISA', 'barT'])))
  
  map(format_name, ['adam', 'LISA', 'barT']): ['Adam', 'Lisa', 'Bart']
  
  替代方案:
  
  [format_name(name) for i, name in enumerate(['adam', 'LISA', 'barT'])]
  
  於是,列表推導能夠很好的替換 map 函數。
  
  2.1.2 filter 過濾器
  
  x = [(), [], {}, None, '', False, 0, True, 1, 2, -3]
  
  x_result = filter(bool,www.michenggw.com x)
  
  list(x_result)
  
  [True, 1, 2, -3]
  
  替代方案:
  
  [i for i in x if bool(i)]
  
  print("filter((lambda x: x>0), range(-5, 5)):",
  
  list(filter((lambda x: x > 0), range(-5, 5))))
  
  filter((lambda x: x>0), range(-5, 5)): [1, 2, 3, 4]
  
  替代方案:
  
  [x for x in range(-5, 5) if x > 0]
  
  2.1.3 reduce 遞推
  
  from functools import reduce
  
  m = 2
  
  n = 5
  
  reduce(lambda x, y: x * y, list(range(1, n + 1)), m)
  
  240
  
  def multiply(a, b):
  
  return a * b
  
  reduce(multiply, range(1, 5))
  
  24
  
  2.1.4 zip 並行
  
  print("zip( [1, 2, 3], [4, 5, 6]):", list(zip([1, 2, 3], [4, 5, 6])))
  
  show:
  
  zip( [1, 2, 3], [4, 5, 6]): [(1, 4), (2, 5), (3, 6)]
  
  2.1.5 sorted 排序
  
  >>> sorted([x * (-1) ** x for x in range(10)])
  
  [-9, -7, -5, -3, -1, 0, 2, 4, 6, 8]
  
  >>> sorted([x * (-1) ** x for x in range(10)], reverse=True)
  
  [8, 6, 4, 2, 0, -1, -3, -5, -7, -9]
  
  >>> sorted([x * (-1) ** x for x in range(10)], key=abs)
  
  [0, -1, 2, -3, 4, -5, 6, -7, 8, -9]
  
  >>> sorted([x * (-1) ** x for x in range(www.mingcheng178.com)], reverse=True, key=abs)
  
  [-9, 8, -7, 6, -5, 4, -3, 2, -1, 0]
  
  min 與 max 同理。
  
  2.2 partial
  
  functools 這貨用於高階函數:指那些做用於函數或者返回其餘函數的函數。一般狀況下,只要是能夠被當作函數調用的對象就是這個模塊的目標。
  
  假設有以下函數:
  
  def multiply(x, y):
  
  return x * y
  
  如今,咱們想返回某個數的雙倍,即:
  
  >>> multiply(3, y=2)
  
  6
  
  >>> multiply(4, y=2)
  
  8
  
  >>> multiply(5, y=2)
  
  10
  
  上面的調用有點繁瑣,每次都要傳入 y=2,咱們想到能夠定義一個新的函數,把 y=2 做爲默認值,即:
  
  def double(x, y=2):
  
  return multiply(x, y)
  
  如今,咱們能夠這樣調用了:
  
  >>> double(www.gcyl158.com)
  
  6
  
  >>> double(4)
  
  8
  
  >>> double(5)
  
  10
  
  事實上,咱們能夠不用本身定義 double,利用 partial,咱們能夠這樣:
  
  from functools import partial
  
  double = partial(multiply, y=2)
  
  partial 接收函數 multiply 做爲參數,固定 multiply 的參數 y=2,並返回一個新的函數給 double,這跟咱們本身定義 double 函數的效果是同樣的。
  
  因此,簡單而言,partial 函數的功能就是:把一個函數的某些參數給固定住,返回一個新的函數。
  
  須要注意的是,咱們上面是固定了 multiply 的關鍵字參數 y=2,若是直接使用:
  
  double = partial(multiply, 2)
  
  則 2 是賦給了 multiply 最左邊的參數 x。
  
  from functools import partial
  
  def subtraction(x,www.gcyL157.com y):
  
  return x - y
  
  f = partial(subtraction, 4)  # 4 賦給了 x
  
  >>> f(10)   # 4 - 10
  
  -6
  
  組合高階函數:
  
  from functools import partial
  
  abs_sorted = partial(sorted, key=abs)
  
  abs_sorted([x * (-1) ** x for x in range(10)])
  
  show:
  
  [0, -1, 2, -3, 4, -5, 6, -7, 8, -9]
  
  abs_reverse_sorted = partial(sorted, key=abs, reverse=True)
  
  abs_reverse_sorted([x * (-1) ** x for x in range(10)])
  
  show:
  
  [-9, 8, -7, 6, -5, 4, -3, 2, -1, 0]
  
  2.3 匿名函數
  
  定義:使⽤用 lambda 表達式建立的函數,函數自己沒有名字
  
  特色:只能使⽤用純表達式,不能賦值,不能使⽤用 while 和 try 等塊語句
  
  語法: lambda [arg1 [,arg2 [,arg3]]]: expression
  
  Expressions get a value; Statements do something
  
  lambda & def
  
  寫法上:
  
  def 能夠用代碼塊,一個代碼塊包含多個語句
  
  lambda只能⽤單行表達式,⽽表達式僅僅是單個語句中的⼀種
  
  結果上:
  
  def 語句必定會增長⼀個函數名稱
  
  lambda 不會,這就下降了了變量名污染的⻛險
  
  能用一個表達式直接放到 return 裏返回的函數均可以⽤ lambda 速寫
  
  def multiply(a, b):
  
  return a * b
  
  multiply_by_lambda = lambda x,y: x * y
  
  List + lambda 能夠獲得⾏爲列表
  
  f_list = [lambda x: x + 1, lambda x: x ** 2, lambda x: x ** 3]
  
  [f_list[j](10) for j in range(3)]
  
  [11, 100, 1000]
  
  在 AI 領域里,這種寫法經常使用於處理數據,好比按預約的⼀系列模式處理數據
  
  下面咱們以兩個例子來結束高階函數:
  
  例1:
  
  L = range(6)
  
  # 計算l中每一個元素的兩倍和平方,並將兩種組成一個列表
  
  # lambda表達式和python函數同樣,也能夠接受函數做爲參數
  
  def twoTimes(x):
  
  return x * 2
  
  def square(x):
  
  return x**2
  
  print([list(map(lambda x: x(i), [twoTimes, square])) for i in L])
  
  print(list(filter(lambda x: x % 2 == 0, L)))
  
  # 內置reduce函數,計算 L 的和
  
  print(reduce(lambda accumValue, newValue: accumValue + newValue, L, 0))
  
  [[0, 0], [2, 1], [4, 4], [6, 9], [8, 16], [10, 25]]
  
  [0, 2, 4]
  
  15
  
  咱們依然可使用列表解析的方式替換 map & filter:
  
  [[twoTimes(x), square(x)] for x in L]
  
  [x for x in L if x % 2 == 0]
  
  經過上面的例子咱們發現,使用列表推導要比 map 與 filter 簡潔且易於理解得多。
  
  可是,咱們這裏還有一個惰性計算的坑:
  
  f_list = [lambda x:x**i for i in range(5)]
  
  [f_list[j](3) for j in range(5)]
  
  [81, 81, 81, 81, 81]
  
  你們能夠思考爲何會出現這個意想不到的結果?python

相關文章
相關標籤/搜索