1.反變換法html
設需產生分佈函數爲F(x)的連續隨機數X。若已有[0,1]區間均勻分佈隨機數R,則產生X的反變換公式爲:dom
F(x)=r, 即x=F-1(r)函數
反函數存在條件:若是函數y=f(x)是定義域D上的單調函數,那麼f(x)必定有反函數存在,且反函數必定是單調的。分佈函數F(x)爲是一個單調遞增函數,因此其反函數存在。從直觀意義上理解,由於r一一對應着x,而在[0,1]均勻分佈隨機數R≤r的機率P(R≤r)=r。 所以,連續隨機數X≤x的機率P(X≤x)=P(R≤r)=r=F(x)oop
即X的分佈函數爲F(x)。atom
例子:下面的代碼使用反變換法在區間[0, 6]上生成隨機數,其機率密度近似爲P(x)=e-x spa
1 import numpy as np 2 import matplotlib.pyplot as plt 3 4 # probability distribution we're trying to calculate 5 p = lambda x: np.exp(-x) 6 7 # CDF of p 8 CDF = lambda x: 1-np.exp(-x) 9 10 # invert the CDF 11 invCDF = lambda x: -np.log(1-x) 12 13 # domain limits 14 xmin = 0 # the lower limit of our domain 15 xmax = 6 # the upper limit of our domain 16 17 # range limits 18 rmin = CDF(xmin) 19 rmax = CDF(xmax) 20 21 N = 10000 # the total of samples we wish to generate 22 23 # generate uniform samples in our range then invert the CDF 24 # to get samples of our target distribution 25 R = np.random.uniform(rmin, rmax, N) 26 X = invCDF(R) 27 28 # get the histogram info 29 hinfo = np.histogram(X,100) 30 31 # plot the histogram 32 plt.hist(X,bins=100, label=u'Samples'); 33 34 # plot our (normalized) function 35 xvals=np.linspace(xmin, xmax, 1000) 36 plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)') 37 38 # turn on the legend 39 plt.legend() 40 plt.show()
通常來講,直方圖的外廓曲線接近於整體X的機率密度曲線。.net
2.舍選抽樣法(Rejection Methold)code
用反變換法生成隨機數時,若是求不出F-1(x)的解析形式或者F(x)就沒有解析形式,則能夠用F-1(x)的近似公式代替。可是因爲反函數計算量較大,有時也是很不適宜的。另外一種方法是由Von Neumann提出的舍選抽樣法。下圖中曲線w(x)爲機率密度函數,按該密度函數產生隨機數的方法以下:orm
基本的rejection methold步驟以下:xml
1. Draw x uniformly from [xmin xmax]
2. Draw x uniformly from [0, ymax]
3. if y < w(x),accept the sample, otherwise reject it
4. repeat
即落在曲線w(x)和X軸所圍成區域內的點接受,落在該區域外的點捨棄。
例子:下面的代碼使用basic rejection sampling methold在區間[0, 10]上生成隨機數,其機率密度近似爲P(x)=e-x
1 # -*- coding: utf-8 -*- 2 ''' 3 The following code produces samples that follow the distribution P(x)=e^−x 4 for x=[0, 10] and generates a histogram of the sampled distribution. 5 ''' 6 import numpy as np 7 import matplotlib.pyplot as plt 8 9 10 P = lambda x: np.exp(-x) 11 12 # domain limits 13 xmin = 0 # the lower limit of our domain 14 xmax = 10 # the upper limit of our domain 15 16 # range limit (supremum) for y 17 ymax = 1 18 19 N = 10000 # the total of samples we wish to generate 20 accepted = 0 # the number of accepted samples 21 samples = np.zeros(N) 22 count = 0 # the total count of proposals 23 24 # generation loop 25 while (accepted < N): 26 27 # pick a uniform number on [xmin, xmax) (e.g. 0...10) 28 x = np.random.uniform(xmin, xmax) 29 30 # pick a uniform number on [0, ymax) 31 y = np.random.uniform(0,ymax) 32 33 # Do the accept/reject comparison 34 if y < P(x): 35 samples[accepted] = x 36 accepted += 1 37 38 count +=1 39 40 print count, accepted 41 42 # get the histogram info 43 # If bins is an int, it defines the number of equal-width bins in the given range 44 (n, bins)= np.histogram(samples, bins=30) # Returns: n-The values of the histogram,n是直方圖中柱子的高度 45 46 # plot the histogram 47 plt.hist(samples,bins=30,label=u'Samples') # bins=30即直方圖中有30根柱子 48 49 # plot our (normalized) function 50 xvals=np.linspace(xmin, xmax, 1000) 51 plt.plot(xvals, n[0]*P(xvals), 'r', label=u'P(x)') 52 53 # turn on the legend 54 plt.legend() 55 plt.show()
>>>
99552 10000
3.推廣的舍取抽樣法
從上圖中能夠看出,基本的rejection methold法抽樣效率很低,由於隨機數x和y是在區間[xmin xmax]和區間[0 ymax]上均勻分佈的,產生的大部分點不會落在w(x)曲線之下(曲線e-x的形狀一邊高一邊低,其曲線下的面積佔矩形面積的比例很小,則舍選抽樣效率很低)。爲了改進簡單舍選抽樣法的效率,能夠構造一個新的密度函數q(x)(called a proposal distribution from which we can readily draw samples),使它的形狀接近p(x),並選擇一個常數k使得kq(x)≥w(x)對於x定義域內的值都成立。對應下圖,首先從分佈q(z)中生成隨機數z0,而後按均勻分佈從區間[0 kq(z0)]生成一個隨機數u0。 if u0 > p(z0) then the sample is rejected,otherwise u0 is retained. 即下圖中灰色區域內的點都要捨棄。可見,因爲隨機點u0只出如今曲線kq(x)之下,且在q(x)較大處出現次數較多,從而大大提升了採樣效率。顯然q(x)形狀越接近p(x),則採樣效率越高。
根據上述思想,也能夠表達採樣規則以下:
1. Draw x from your proposal distribution q(x)
2. Draw y uniformly from [0 1]
3. if y < p(x)/kq(x) , accept the sample, otherwise reject it
4. repeat
下面例子中選擇函數p(x)=1/(x+1)做爲proposal distribution,k=1。曲線1/(x+1)的形狀與e-x相近。
1 import numpy as np 2 import matplotlib.pyplot as plt 3 4 p = lambda x: np.exp(-x) # our distribution 5 g = lambda x: 1/(x+1) # our proposal pdf (we're choosing k to be 1) 6 CDFg = lambda x: np.log(x +1) # generates our proposal using inverse sampling 7 8 # domain limits 9 xmin = 0 # the lower limit of our domain 10 xmax = 10 # the upper limit of our domain 11 12 # range limits for inverse sampling 13 umin = CDFg(xmin) 14 umax = CDFg(xmax) 15 16 N = 10000 # the total of samples we wish to generate 17 accepted = 0 # the number of accepted samples 18 samples = np.zeros(N) 19 count = 0 # the total count of proposals 20 21 # generation loop 22 while (accepted < N): 23 24 # Sample from g using inverse sampling 25 u = np.random.uniform(umin, umax) 26 xproposal = np.exp(u) - 1 27 28 # pick a uniform number on [0, 1) 29 y = np.random.uniform(0, 1) 30 31 # Do the accept/reject comparison 32 if y < p(xproposal)/g(xproposal): 33 samples[accepted] = xproposal 34 accepted += 1 35 36 count +=1 37 38 print count, accepted 39 40 # get the histogram info 41 hinfo = np.histogram(samples,50) 42 43 # plot the histogram 44 plt.hist(samples,bins=50, label=u'Samples'); 45 46 # plot our (normalized) function 47 xvals=np.linspace(xmin, xmax, 1000) 48 plt.plot(xvals, hinfo[0][0]*p(xvals), 'r', label=u'p(x)') 49 50 # turn on the legend 51 plt.legend() 52 plt.show()
>>>
24051 10000
能夠對比基本的舍取法和改進的舍取法的結果,前者產生符合要求分佈的10000個隨機數運算了99552步,後者運算了24051步,能夠看到效率明顯提升。
參考:
http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-3.html
http://blog.csdn.net/xianlingmao/article/details/7768833
http://blog.sina.com.cn/s/blog_60b44d6a0101l45z.html
http://www.ruanyifeng.com/blog/2015/07/monte-carlo-method.html