以前拿canal監聽mysql的binlog並將消息遞給kafka topic,可是canal只能監聽mysql,假如數據庫是sqlserver\orcale\mongodb那麼徹底無能爲力.看了一下網上的資料,主流是用kafka connect來監聽sqlserver,下面分享一下我嘗試的過程.html
最開始我看博客,上面寫的比較亂,介紹了不少東西,可是我不清楚這些東西之間有什麼關係,誰和誰通信,誰又起到什麼做用,和當初配置canal徹底不一樣.如今簡單說說,配置過程當中涉及到kafka connector,confluent,kafka. kafka connector是kafka自帶特性,用來建立和管理數據流管道,是個和其它系統交換數據的簡單模型;java
confluent是一家圍繞kafka作產品的公司,不但提供數據傳輸的系統,也提供數據傳輸的工具,內部封裝了kafka.在這裏咱們只用它下載kafka連接sqlserver的connector組件.mysql
我使用的kafka是用CDH cloudera manager安裝的,所以kafka的bin目錄\配置目錄\日誌什麼的都不在一塊兒,也沒有$KAFKA_HOME.雖然此次是測試功能,可是爲了之後下載更多connector組件考慮,我仍是下載了confluent.建議在官網下載,沒翻&牆,網速還能夠.git
confluent下載地址 https://www.confluent.io/download/ 選擇下面的Download Confluent Platform,填寫郵件地址和用途下載.github
5.2版本下載地址: http://packages.confluent.io/archive/5.2/web
在準備下載和解壓的位置,開始下載和解壓:sql
wget http://packages.confluent.io/archive/5.2/confluent-5.2.3-2.11.zip tar -zxvf confluent-5.2.3-2.11.zip confluent-5.2.3-2.11
解壓出來應該是有一下幾個文件夾(usr是我本身建立的,用來存儲用戶的配置文件和語句):mongodb
將CONFLUENT_HOME配置進環境變量裏:數據庫
vi /etc/profile export CONFLUENT_HOME=/usr/software/confluent-5.2.3 export PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME:$CONFLUENT_HOME/bin
路徑是我本身的,你們改爲本身的文件路徑.express
下載connector鏈接器組件,每一個組件鏈接jdbc的配置文件均可能不同,注意看官方文檔.我選擇的是 debezium-connector-sqlserver .先進入bin目錄,可以看到有confluent-hub 指令,咱們靠它來下載組件.
[root@centos04 bin]# confluent-hub install debezium/debezium-connector-sqlserver:latest The component can be installed in any of the following Confluent Platform installations: 1. /usr/software/confluent-5.2.3 (based on $CONFLUENT_HOME) 2. /usr/software/confluent-5.2.3 (where this tool is installed) Choose one of these to continue the installation (1-2): 2 Do you want to install this into /usr/software/confluent-5.2.3/share/confluent-hub-components? (yN) y^H Do you want to install this into /usr/software/confluent-5.2.3/share/confluent-hub-components? (yN) y Component's license: Apache 2.0 https://github.com/debezium/debezium/blob/master/LICENSE.txt I agree to the software license agreement (yN) y
輸入指令後先問你安裝組件位置,是$CONFLUENT_HOME目錄下仍是confluent目錄下,再問你組件是否安裝在{$confluent}/share/confluent-hub-components這個默認位置,選擇n的話能夠本身輸入文件位置,再問是否贊成許可,以及是否更新組件.假如沒有特別需求的話,直接選擇y就能夠了.
其它組件能夠在https://www.confluent.io/hub/裏面挑選,還有官方文檔教你如何配置,很重要.光看網上教程怎麼作沒有理解爲何這麼作很容易走彎路,根本不知道哪裏作錯了.我看了不少篇都是如出一轍,用的組件是 Confluent MSSQL Connector .可是這個組件已經沒有了,換其它組件的話配置須要更改.我就在這裏花費了很長時間.注意看官方文檔.
Debezium SQL Server的說明文檔地址:https://docs.confluent.io/current/connect/debezium-connect-sqlserver/index.html#sqlserver-source-connector
下載完成後就能夠在{$confluent}/share/confluent-hub-components目錄下面看見下載好的組件了.接下來配置kafka.
進入kafka的配置目錄,kafka單獨安裝的話位置是$KAFKA_HOME/config,CDH版本的配置文件在/opt/cloudera/parcels/CDH-6.3.0-1.cdh6.3.0.p0.1279813/etc/kafka/conf.dist下面.不知道安裝位置的話直接搜文件名connect-distributed.properties.假如這都沒有那說明你的kafka可能版本過低,沒有這個特性.
修改其中的connect-distributed.properties文件.
## # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ## # This file contains some of the configurations for the Kafka Connect distributed worker. This file is intended # to be used with the examples, and some settings may differ from those used in a production system, especially # the `bootstrap.servers` and those specifying replication factors. # A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. #kafka集羣位置,須要配置 bootstrap.servers=centos04:9092,centos05:9092,centos06:9092 # unique name for the cluster, used in forming the Connect cluster group. Note that this must not conflict with consumer group IDs #group.id,默認都是connect-cluster,保持一致就行 group.id=connect-cluster # The converters specify the format of data in Kafka and how to translate it into Connect data. Every Connect user will # need to configure these based on the format they want their data in when loaded from or stored into Kafka key.converter=org.apache.kafka.connect.json.JsonConverter value.converter=org.apache.kafka.connect.json.JsonConverter # Converter-specific settings can be passed in by prefixing the Converter's setting with the converter we want to apply # it to key.converter.schemas.enable=true value.converter.schemas.enable=true # Topic to use for storing offsets. This topic should have many partitions and be replicated and compacted. # Kafka Connect will attempt to create the topic automatically when needed, but you can always manually create # the topic before starting Kafka Connect if a specific topic configuration is needed. # Most users will want to use the built-in default replication factor of 3 or in some cases even specify a larger value. # Since this means there must be at least as many brokers as the maximum replication factor used, we'd like to be able # to run this example on a single-broker cluster and so here we instead set the replication factor to 1. offset.storage.topic=connect-offsets offset.storage.replication.factor=3 offset.storage.partitions=1 # Topic to use for storing connector and task configurations; note that this should be a single partition, highly replicated, # and compacted topic. Kafka Connect will attempt to create the topic automatically when needed, but you can always manually create # the topic before starting Kafka Connect if a specific topic configuration is needed. # Most users will want to use the built-in default replication factor of 3 or in some cases even specify a larger value. # Since this means there must be at least as many brokers as the maximum replication factor used, we'd like to be able # to run this example on a single-broker cluster and so here we instead set the replication factor to 1. config.storage.topic=connect-configs config.storage.replication.factor=3 # Topic to use for storing statuses. This topic can have multiple partitions and should be replicated and compacted. # Kafka Connect will attempt to create the topic automatically when needed, but you can always manually create # the topic before starting Kafka Connect if a specific topic configuration is needed. # Most users will want to use the built-in default replication factor of 3 or in some cases even specify a larger value. # Since this means there must be at least as many brokers as the maximum replication factor used, we'd like to be able # to run this example on a single-broker cluster and so here we instead set the replication factor to 1. status.storage.topic=connect-status status.storage.replication.factor=3 #status.storage.partitions=1 offset.storage.file.filename=/var/log/confluent/offset-storage-file # Flush much faster than normal, which is useful for testing/debugging offset.flush.interval.ms=10000 # These are provided to inform the user about the presence of the REST host and port configs # Hostname & Port for the REST API to listen on. If this is set, it will bind to the interface used to listen to requests. #rest.host.name= #kafka connector端口號,能夠修改 rest.port=8083 # The Hostname & Port that will be given out to other workers to connect to i.e. URLs that are routable from other servers. #rest.advertised.host.name= #rest.advertised.port= # Set to a list of filesystem paths separated by commas (,) to enable class loading isolation for plugins # (connectors, converters, transformations). The list should consist of top level directories that include # any combination of: # a) directories immediately containing jars with plugins and their dependencies # b) uber-jars with plugins and their dependencies # c) directories immediately containing the package directory structure of classes of plugins and their dependencies # Examples: # plugin.path=/usr/local/share/java,/usr/local/share/kafka/plugins,/opt/connectors, # Replace the relative path below with an absolute path if you are planning to start Kafka Connect from within a # directory other than the home directory of Confluent Platform. #組件位置,把confluent組件下載位置加上去 plugin.path=/usr/software/confluent-5.2.3/share/java/confluent-hub-client,,/usr/software/confluent-5.2.3/share/confluent-hub-client,/usr/software/confluent-5.2.3/share/confluent-hub-components
先建立使用connector要用到的特殊topic,避免在啓動kafka connector的時候建立失敗致使kafka connector啓動失敗.特殊topic有三個:
kafka-topics --create --zookeeper 192.168.49.104:2181 --topic connect-offsets --replication-factor 3 --partitions 1 kafka-topics --create --zookeeper 192.168.49.104:2181 --topic connect-configs --replication-factor 3 --partitions 1 kafka-topics --create --zookeeper 192.168.49.104:2181 --topic connect-status --replication-factor 3 --partitions 1
再進入kafka的bin目錄,CDH版本的是/opt/cloudera/parcels/CDH-6.3.0-1.cdh6.3.0.p0.1279813/lib/kafka/bin.
執行connect-distributed.sh指令:
sh connect-distributed.sh /opt/cloudera/parcels/CDH-6.3.0-1.cdh6.3.0.p0.1279813/etc/kafka/conf.dist/connect-distributed.properties
說一點,CDH安裝的kafka在執行指令的時候會報錯找不到日誌文件,緣由是CDH安裝的kafka各個部分都不在一塊兒.直接修改connect-distributed.sh ,把裏面的地址寫死就行了.
vi connect-distributed.sh #修改的地方 base_dir=$(dirname $0) if [ "x$KAFKA_LOG4J_OPTS" = "x" ]; then export KAFKA_LOG4J_OPTS="-Dlog4j.configuration=file:/opt/cloudera/parcels/CDH-6.3.0-1.cdh6.3.0.p0.1279813/etc/kafka/conf.dist/connect-log4j.properties" fi
這樣執行起來就沒有問題了.
以上執行的時候是在前臺執行,前臺中止退出的話kafka connector也就中止了,這種狀況適合調試.在後臺運行須要加上 -daemon 參數.
sh connect-distributed.sh -daemon /opt/cloudera/parcels/CDH-6.3.0-1.cdh6.3.0.p0.1279813/etc/kafka/conf.dist/connect-distributed.properties
使用Debezium SQL Server來監聽的話須要開啓sqlserver的CDC功能.CDC功能要先開啓庫的捕獲,再開啓表的捕獲,才能監聽到表的變化.
我使用的是navicat來鏈接數據庫,你們用本身合適的工具來就能夠了.
開啓庫的捕獲:
use database; EXEC sys.sp_cdc_enable_db
這一步後數據庫會多出一個叫cdc的模式,下面有5張表.
查詢哪些數據庫開啓了CDC功能:
select * from sys.databases where is_cdc_enabled = 1
啓用表的CDC功能:
use database; EXEC sys.sp_cdc_enable_table @source_schema = 'dbo', @source_name = 'table_name', @role_name = null;
查看哪些表啓用了CDC功能:
use database; select name, is_tracked_by_cdc from sys.tables where is_tracked_by_cdc = 1
以上就開啓了對錶監聽的CDC功能.
當咱們啓動KafkaConnector後,就可以經過接口的形式來訪問和提交信息.
查看kafka connector信息:
[root@centos04 huishui]# curl -s centos04:8083 | jq { "version": "2.2.1-cdh6.3.0", "commit": "unknown", "kafka_cluster_id": "GwdoyDpbT5uP4k2CN6zbrw" }
8083是上面配置的端口號,一樣也能夠經過web頁面來訪問.
查看安裝了哪些connector鏈接器:
[root@centos04 huishui]# curl -s centos04:8083 | jq { "version": "2.2.1-cdh6.3.0", "commit": "unknown", "kafka_cluster_id": "GwdoyDpbT5uP4k2CN6zbrw" } [root@centos04 huishui]# curl -s centos04:8083/connector-plugins | jq [ { "class": "io.confluent.connect.elasticsearch.ElasticsearchSinkConnector", "type": "sink", "version": "10.0.2" }, { "class": "io.confluent.connect.jdbc.JdbcSinkConnector", "type": "sink", "version": "5.5.1" }, { "class": "io.confluent.connect.jdbc.JdbcSourceConnector", "type": "source", "version": "5.5.1" }, { "class": "io.debezium.connector.sqlserver.SqlServerConnector", "type": "source", "version": "1.2.2.Final" }, { "class": "org.apache.kafka.connect.file.FileStreamSinkConnector", "type": "sink", "version": "2.2.1-cdh6.3.0" }, { "class": "org.apache.kafka.connect.file.FileStreamSourceConnector", "type": "source", "version": "2.2.1-cdh6.3.0" } ]
我安裝了不少,有io.debezium.connector.sqlserver.SqlServerConnector就說明沒問題.
查看當前運行的任務/Task:
[root@centos04 huishui]# curl -s centos04:8083/connectors | jq []
因爲咱們尚未提交任何用戶配置,因此也就沒有任務,返回就是一個空的json.到這裏說明kafka connector啓動成功,可以正常進行用戶配置.接下來纔是有關業務的操做,編寫一個用戶配置的json,經過接口進行提交:
#我選擇把用戶配置保存下來.因爲個人kafka都不在一個文件夾下面,因此我把配置文件都存在confluent/usr中.其實存不存都無所謂的.按照官方文檔,我選擇存下來. #當建立好kafka connector以後,會自動建立kafka topic.名稱爲 ${server.name}.$tableName.debezium不能監聽單獨一張表,全部表都會有對應的topic. cd $CONFLUENT mkdir usr cd usr vi register-sqlserver.json { "name": "inventory-connector", "config": { "connector.class" : "io.debezium.connector.sqlserver.SqlServerConnector", "tasks.max" : "1", "database.server.name" : "server.name", "database.hostname" : "localhost", "database.port" : "1433", "database.user" : "sa", "database.password" : "password!", "database.dbname" : "rcscounty_quannan", "database.history.kafka.bootstrap.servers" : "centos04:9092", "database.history.kafka.topic": "schema-changes.inventory" } } curl -i -X POST -H "Accept:application/json" -H "Content-Type:application/json" http://centos04:8083/connectors/ -d @register-sqlserver.json
提交失敗會有錯誤信息.看看錯誤信息是什麼而後跟着改就能夠了.當提交成功後,再查看當前運行的Task,就會出現有一個connector:
[root@centos04 huishui]# curl -s centos04:8083/connectors | jq [ "inventory-connector" ]
查看kafka topic:
kafka-topics --list --zookeeper centos04:2181
會看見kafka建立好了topic,假如沒有對應的topic,那麼多是connector在運行時出現了問題.查看當時建立的connector狀態:
[root@centos04 usr]# curl -s centos04:8083/connectors/inventory-connector/status | jq { "name": "inventory-connector", "connector": { "state": "RUNNING", "worker_id": "192.168.49.104:8083" }, "tasks": [ { "id": 0, "state": "RUNNING", "worker_id": "192.168.49.104:8083" } ], "type": "source" }
我這個是運行良好的狀態.運行沒有問題,就開始監聽開啓了CDC功能的表對應的topic,看看是否可以成功監聽表的改動:
kafka-console-consumer --bootstrap-server centos04:9092 --topic server.name.tableName
能夠看到一次Debezium connector 建立的topic傳遞的消息很是多,可能須要修改kafka最大消息體.我以前設置的是9M,因此這裏沒遇到問題.
Debezium 傳遞的數據庫變更,新增\修改\刪除\模式更改的json都有所不一樣,具體詳情請看用於SQL Server的Debezium鏈接器.
總之能看到變更就說明調試成功,至於以後如何利用kafka topic,就以後再說.
但願這篇文章可以對您有所幫助!
附上學習中看過的文章: