摘要: Tensorflow入門教程1python
去年買了幾本講tensorflow的書,結果今年看的時候發現有些樣例代碼所用的API已通過時了。看來本身維護一個保持更新的Tensorflow的教程仍是有意義的。這是寫這一系列的初心。
快餐教程系列但願可以儘量下降門檻,少講,講透。
爲了讓你們在一開始就看到一個美好的場景,而不是停留在漫長的基礎知識積累上,參考網上的一些教程,咱們直接一開始就直接展現用tensorflow實現MNIST手寫識別的例子。而後基礎知識咱們再慢慢講。git
因爲Python是跨平臺的語言,因此在各系統上安裝tensorflow都是一件相對比較容易的事情。GPU加速的事情咱們後面再說。github
咱們以Ubuntu 16.04版爲例,首先安裝python3和pip3。pip是python的包管理工具。windows
sudo apt install python3 sudo apt install python3-pip
而後就能夠經過pip3來安裝tensorflow:網絡
pip3 install tensorflow --upgrade
建議使用Homebrew來安裝python。dom
brew install python3
安裝python3以後,仍是經過pip3來安裝tensorflow.機器學習
pip3 install tensorflow --upgrade
Windows平臺上建議經過Anaconda來安裝tensorflow,下載地址在:https://www.anaconda.com/download/#windowside
而後打開Anaconda Prompt,輸入:函數
conda create -n tensorflow pip activate tensorflow pip install --ignore-installed --upgrade tensorflow
這樣就安裝好了Tensorflow。工具
咱們迅速來個例子試下好很差用:
import tensorflow as tf a = tf.constant(1) b = tf.constant(2) c = a * b sess = tf.Session() print(sess.run(c))
輸出結果爲2.
Tensorflow顧名思義,是一些Tensor張量的流組成的運算。
運算須要一個Session來運行。若是print(c)的話,會獲得
Tensor("mul_1:0", shape=(), dtype=int32)
就是說這是一個乘法運算的Tensor,須要經過Session.run()來執行。
咱們首先看一個最簡單的機器學習模型,線性迴歸的例子。
線性迴歸的模型就是一個矩陣乘法:
tf.multiply(X, w)
而後咱們經過調用Tensorflow計算梯度降低的函數tf.train.GradientDescentOptimizer來實現優化。
咱們看下這個例子代碼,只有30多行,邏輯仍是很清晰的。例子來自github上大牛的工做:https://github.com/nlintz/TensorFlow-Tutorials,不是個人原創。
import tensorflow as tf import numpy as np trX = np.linspace(-1, 1, 101) trY = 2 * trX + np.random.randn(*trX.shape) * 0.33 # 建立一些線性值附近的隨機值 X = tf.placeholder("float") Y = tf.placeholder("float") def model(X, w): return tf.multiply(X, w) # X*w線性求值,很是簡單 w = tf.Variable(0.0, name="weights") y_model = model(X, w) cost = tf.square(Y - y_model) # 用平方偏差作爲優化目標 train_op = tf.train.GradientDescentOptimizer(0.01).minimize(cost) # 梯度降低優化 # 開始建立Session幹活! with tf.Session() as sess: # 首先須要初始化全局變量,這是Tensorflow的要求 tf.global_variables_initializer().run() for i in range(100): for (x, y) in zip(trX, trY): sess.run(train_op, feed_dict={X: x, Y: y}) print(sess.run(w))
最終會獲得一個接近2的值,好比我此次運行的值爲1.9183811
線性迴歸不過癮,咱們直接一步到位,開始進行手寫識別。
咱們採用深度學習三巨頭之一的Yann Lecun教授的MNIST數據爲例。如上圖所示,MNIST的數據是28x28的圖像,而且標記了它的值應該是什麼。
咱們首先無論三七二十一,就用線性模型來作分類。
算上註釋和空行,一共加起來30行左右,咱們就能夠解決手寫識別這麼困難的問題啦!請看代碼:
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w): return tf.matmul(X, w) # 模型仍是矩陣乘法 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels X = tf.placeholder("float", [None, 784]) Y = tf.placeholder("float", [None, 10]) w = init_weights([784, 10]) py_x = model(X, w) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) # 計算偏差 train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost) # construct optimizer predict_op = tf.argmax(py_x, 1) with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(100): for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)): sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]}) print(i, np.mean(np.argmax(teY, axis=1) == sess.run(predict_op, feed_dict={X: teX})))
通過100輪的訓練,咱們的準確率是92.36%。
用了最簡單的線性模型,咱們換成經典的神經網絡來實現這個功能。神經網絡的圖以下圖所示。
咱們仍是無論三七二十一,創建一個隱藏層,用最傳統的sigmoid函數作激活函數。其核心邏輯仍是矩陣乘法,這裏面沒有任何技巧。
h = tf.nn.sigmoid(tf.matmul(X, w_h)) return tf.matmul(h, w_o)
完整代碼以下,仍然是40多行,不長:
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data # 全部鏈接隨機生成權值 def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w_h, w_o): h = tf.nn.sigmoid(tf.matmul(X, w_h)) return tf.matmul(h, w_o) mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels X = tf.placeholder("float", [None, 784]) Y = tf.placeholder("float", [None, 10]) w_h = init_weights([784, 625]) w_o = init_weights([625, 10]) py_x = model(X, w_h, w_o) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) # 計算偏差損失 train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost) # construct an optimizer predict_op = tf.argmax(py_x, 1) with tf.Session() as sess: tf.global_variables_initializer().run() for i in range(100): for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)): sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end]}) print(i, np.mean(np.argmax(teY, axis=1) == sess.run(predict_op, feed_dict={X: teX})))
第一輪運行,我此次的準確率只有69.11% ,第二次就提高到了82.29%。最終結果是95.41%,比Logistic迴歸的強!
請注意咱們模型的核心那兩行代碼,徹底就是無腦地全鏈接作了一個隱藏層而己,這其中沒有任何的技術。徹底是靠神經網絡的模型能力。
上一個技術含量有點低,如今是深度學習的時代了,咱們有不少進步。好比咱們知道要將sigmoid函數換成ReLU函數。咱們還知道要作Dropout了。因而咱們仍是一個隱藏層,寫個更現代一點的模型吧:
X = tf.nn.dropout(X, p_keep_input) h = tf.nn.relu(tf.matmul(X, w_h)) h = tf.nn.dropout(h, p_keep_hidden) h2 = tf.nn.relu(tf.matmul(h, w_h2)) h2 = tf.nn.dropout(h2, p_keep_hidden) return tf.matmul(h2, w_o)
除了ReLU和dropout這兩個技巧,咱們仍然只有一個隱藏層,表達能力沒有太大的加強。並不能算是深度學習。
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden): X = tf.nn.dropout(X, p_keep_input) h = tf.nn.relu(tf.matmul(X, w_h)) h = tf.nn.dropout(h, p_keep_hidden) h2 = tf.nn.relu(tf.matmul(h, w_h2)) h2 = tf.nn.dropout(h2, p_keep_hidden) return tf.matmul(h2, w_o) mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels X = tf.placeholder("float", [None, 784]) Y = tf.placeholder("float", [None, 10]) w_h = init_weights([784, 625]) w_h2 = init_weights([625, 625]) w_o = init_weights([625, 10]) p_keep_input = tf.placeholder("float") p_keep_hidden = tf.placeholder("float") py_x = model(X, w_h, w_h2, w_o, p_keep_input, p_keep_hidden) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost) predict_op = tf.argmax(py_x, 1) with tf.Session() as sess: # you need to initialize all variables tf.global_variables_initializer().run() for i in range(100): for start, end in zip(range(0, len(trX), 128), range(128, len(trX)+1, 128)): sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end], p_keep_input: 0.8, p_keep_hidden: 0.5}) print(i, np.mean(np.argmax(teY, axis=1) == sess.run(predict_op, feed_dict={X: teX, p_keep_input: 1.0, p_keep_hidden: 1.0})))
從結果看到,第二次就達到了96%以上的正確率。後來就一直在98.4%左右遊蕩。僅僅是ReLU和Dropout,就把準確率從95%提高到了98%以上。
真正的深度學習利器CNN,卷積神經網絡出場。此次的模型比起前面幾個無腦型的,的確是複雜一些。涉及到卷積層和池化層。這個是須要咱們後面詳細講一講了。
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_data batch_size = 128 test_size = 256 def init_weights(shape): return tf.Variable(tf.random_normal(shape, stddev=0.01)) def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden): l1a = tf.nn.relu(tf.nn.conv2d(X, w, # l1a shape=(?, 28, 28, 32) strides=[1, 1, 1, 1], padding='SAME')) l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1], # l1 shape=(?, 14, 14, 32) strides=[1, 2, 2, 1], padding='SAME') l1 = tf.nn.dropout(l1, p_keep_conv) l2a = tf.nn.relu(tf.nn.conv2d(l1, w2, # l2a shape=(?, 14, 14, 64) strides=[1, 1, 1, 1], padding='SAME')) l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1], # l2 shape=(?, 7, 7, 64) strides=[1, 2, 2, 1], padding='SAME') l2 = tf.nn.dropout(l2, p_keep_conv) l3a = tf.nn.relu(tf.nn.conv2d(l2, w3, # l3a shape=(?, 7, 7, 128) strides=[1, 1, 1, 1], padding='SAME')) l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1], # l3 shape=(?, 4, 4, 128) strides=[1, 2, 2, 1], padding='SAME') l3 = tf.reshape(l3, [-1, w4.get_shape().as_list()[0]]) # reshape to (?, 2048) l3 = tf.nn.dropout(l3, p_keep_conv) l4 = tf.nn.relu(tf.matmul(l3, w4)) l4 = tf.nn.dropout(l4, p_keep_hidden) pyx = tf.matmul(l4, w_o) return pyx mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels trX = trX.reshape(-1, 28, 28, 1) # 28x28x1 input img teX = teX.reshape(-1, 28, 28, 1) # 28x28x1 input img X = tf.placeholder("float", [None, 28, 28, 1]) Y = tf.placeholder("float", [None, 10]) w = init_weights([3, 3, 1, 32]) # 3x3x1 conv, 32 outputs w2 = init_weights([3, 3, 32, 64]) # 3x3x32 conv, 64 outputs w3 = init_weights([3, 3, 64, 128]) # 3x3x32 conv, 128 outputs w4 = init_weights([128 * 4 * 4, 625]) # FC 128 * 4 * 4 inputs, 625 outputs w_o = init_weights([625, 10]) # FC 625 inputs, 10 outputs (labels) p_keep_conv = tf.placeholder("float") p_keep_hidden = tf.placeholder("float") py_x = model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y)) train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost) predict_op = tf.argmax(py_x, 1) with tf.Session() as sess: # you need to initialize all variables tf.global_variables_initializer().run() for i in range(100): training_batch = zip(range(0, len(trX), batch_size), range(batch_size, len(trX)+1, batch_size)) for start, end in training_batch: sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end], p_keep_conv: 0.8, p_keep_hidden: 0.5}) test_indices = np.arange(len(teX)) # Get A Test Batch np.random.shuffle(test_indices) test_indices = test_indices[0:test_size] print(i, np.mean(np.argmax(teY[test_indices], axis=1) == sess.run(predict_op, feed_dict={X: teX[test_indices], p_keep_conv: 1.0, p_keep_hidden: 1.0})))
咱們看下此次的運行數據:
0 0.95703125 1 0.9921875 2 0.9921875 3 0.98046875 4 0.97265625 5 0.98828125 6 0.99609375
在第6輪的時候,就跑出了99.6%的高分值,比ReLU和Dropout的一個隱藏層的神經網絡的98.4%大大提升。由於難度是越到後面越困難。
在第16輪的時候,居然跑出了100%的正確率:
7 0.99609375 8 0.99609375 9 0.98828125 10 0.98828125 11 0.9921875 12 0.98046875 13 0.99609375 14 0.9921875 15 0.99609375 16 1.0
綜上,藉助Tensorflow和機器學習工具,咱們只有幾十行代碼,就解決了手寫識別這樣級別的問題,並且準確度能夠達到如此程度。