Codeforces Round #262 (Div. 2) E. Roland and Rose 暴力

E. Roland and Rose

Time Limit: 1 Sec  Memory Limit: 256 MBios

題目鏈接

http://codeforces.com/problemset/problem/460/E

Description

Roland loves growing flowers. He has recently grown a beautiful rose at point (0, 0) of the Cartesian coordinate system. The rose is so beautiful that Roland is afraid that the evil forces can try and steal it. ide

To protect the rose, Roland wants to build n watch towers. Let's assume that a tower is a point on the plane at the distance of at most r from the rose. Besides, Roland assumes that the towers should be built at points with integer coordinates and the sum of squares of distances between all pairs of towers must be as large as possible. Note, that Roland may build several towers at the same point, also he may build some of them at point (0, 0).ui

Help Roland build the towers at the integer points so that the sum of squares of distances between all towers is maximum possible. Note that the distance in this problem is defined as the Euclidian distance between points.this



Input

The first line contains two integers, n and r (2 ≤ n ≤ 8; 1 ≤ r ≤ 30).
1000000000.

Output

In the first line print an integer — the maximum possible sum of squared distances. In the i-th of the following n lines print two integers, xi, yi — the coordinates of the i-th tower. Each tower must be inside or on the border of the circle with radius r. Note that there may be several towers located at the same point of the plane, also some towers can be located at point (0, 0).spa

If there are multiple valid optimal arrangements, choose any of them.code


Sample Input

4 1

Sample Output

16
0 1
0 1
0 -1
0 -1

HINT


題意ip

在以原點爲圓心,半徑爲R的局域內選擇N個整數點,使得N個點中兩兩距離的平方和最大。

題解:
ci

R最大爲30,那麼其實距離圓心距離最大的整數點不過12個最多,直接暴力枚舉。

代碼:get

 

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 200001
#define mod 10007
#define eps 1e-9
//const int inf=0x7fffffff;   //無限大
const int inf=0x3f3f3f3f;
/*

int buf[10];
inline void write(int i) {
  int p = 0;if(i == 0) p++;
  else while(i) {buf[p++] = i % 10;i /= 10;}
  for(int j = p-1; j >=0; j--) putchar('0' + buf[j]);
  printf("\n");
}
*/
//**************************************************************************************
inline ll read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
const int K = 210, N = 9;

int x[K], y[K], z[K], ax[N], ay[N], tx[N], ty[N], n, m, r, i, j, k, r1, r2, s;

void go(int t, int p)
{
    if (p == n)
    {
        int u = 0;
        for (int i = 0; i < n; i++)
            for (int j = i + 1; j < n; j++)
                u += (tx[i] -  tx[j]) * (tx[i] - tx[j]) + (ty[i] - ty[j]) * (ty[i] - ty[j]);
        if (u > s)
        {
            s = u;
            for (int i = 0; i < n; i++)
                ax[i] = tx[i], ay[i] = ty[i];
        }
    }
    else
    {
        for (int i = t; i < k; i++)
        {
            tx[p] = x[i], ty[p] = y[i];
            go(i, p + 1);
        }
    }
}

int main()
{
    scanf("%d%d", &n, &r);

    r1 = (r - 1) * (r - 1);
    r2 = r * r;

    for (i = -r; i <= r; i++)
        for (j = -r; j <= r; j++)
        {
            int t = i * i + j * j;
            if (t <= r2 && t > r1)
                x[k] = i, y[k] = j, z[k++] = t;
        }

    for (i = 0; i < k; i++)
        for (j = i + 1; j < k; j++)
            if (z[j] > z[i])
            {
                int zz;
                zz = x[j], x[j] = x[i], x[i] = zz;
                zz = y[j], y[j] = y[i], y[i] = zz;
                zz = z[j], z[j] = z[i], z[i] = zz;
            }
    k = 18;

    go(0, 0);

    printf("%d\n", s);
    for (i = 0; i < n; i++)
        printf("%d %d\n", ax[i], ay[i]);

    return 0;
}
相關文章
相關標籤/搜索