聊聊flink如何兼容StormTopology

本文主要研究一下flink如何兼容StormTopologyhtml

實例

@Test
    public void testStormWordCount() throws Exception {
        //NOTE 1 build Topology the Storm way
        final TopologyBuilder builder = new TopologyBuilder();
        builder.setSpout("spout", new RandomWordSpout(), 1);
        builder.setBolt("count", new WordCountBolt(), 5)
                .fieldsGrouping("spout", new Fields("word"));
        builder.setBolt("print", new PrintBolt(), 1)
                .shuffleGrouping("count");

        //NOTE 2 convert StormTopology to FlinkTopology
        FlinkTopology flinkTopology = FlinkTopology.createTopology(builder);

        //NOTE 3 execute program locally using FlinkLocalCluster
        Config conf = new Config();
        // only required to stabilize integration test
        conf.put(FlinkLocalCluster.SUBMIT_BLOCKING, true);

        final FlinkLocalCluster cluster = FlinkLocalCluster.getLocalCluster();
        cluster.submitTopology("stormWordCount", conf, flinkTopology);
        cluster.shutdown();
    }
  • 這裏使用FlinkLocalCluster.getLocalCluster()來建立或獲取FlinkLocalCluster,以後調用FlinkLocalCluster.submitTopology來提交topology,結束時經過FlinkLocalCluster.shutdown來關閉cluster
  • 這裏構建的RandomWordSpout繼承自storm的BaseRichSpout,WordCountBolt繼承自storm的BaseBasicBolt;PrintBolt繼承自storm的BaseRichBolt(因爲flink是使用的Checkpoint機制,不會轉換storm的ack操做,於是這裏用BaseBasicBolt仍是BaseRichBolt都無特別要求)
  • FlinkLocalCluster.submitTopology這裏使用的topology是StormTopoloy轉換後的FlinkTopology

LocalClusterFactory

flink-release-1.6.2/flink-contrib/flink-storm/src/main/java/org/apache/flink/storm/api/FlinkLocalCluster.javajava

// ------------------------------------------------------------------------
    //  Access to default local cluster
    // ------------------------------------------------------------------------

    // A different {@link FlinkLocalCluster} to be used for execution of ITCases
    private static LocalClusterFactory currentFactory = new DefaultLocalClusterFactory();

    /**
     * Returns a {@link FlinkLocalCluster} that should be used for execution. If no cluster was set by
     * {@link #initialize(LocalClusterFactory)} in advance, a new {@link FlinkLocalCluster} is returned.
     *
     * @return a {@link FlinkLocalCluster} to be used for execution
     */
    public static FlinkLocalCluster getLocalCluster() {
        return currentFactory.createLocalCluster();
    }

    /**
     * Sets a different factory for FlinkLocalClusters to be used for execution.
     *
     * @param clusterFactory
     *         The LocalClusterFactory to create the local clusters for execution.
     */
    public static void initialize(LocalClusterFactory clusterFactory) {
        currentFactory = Objects.requireNonNull(clusterFactory);
    }

    // ------------------------------------------------------------------------
    //  Cluster factory
    // ------------------------------------------------------------------------

    /**
     * A factory that creates local clusters.
     */
    public interface LocalClusterFactory {

        /**
         * Creates a local Flink cluster.
         * @return A local Flink cluster.
         */
        FlinkLocalCluster createLocalCluster();
    }

    /**
     * A factory that instantiates a FlinkLocalCluster.
     */
    public static class DefaultLocalClusterFactory implements LocalClusterFactory {

        @Override
        public FlinkLocalCluster createLocalCluster() {
            return new FlinkLocalCluster();
        }
    }
  • flink在FlinkLocalCluster裏頭提供了一個靜態方法getLocalCluster,用來獲取FlinkLocalCluster,它是經過LocalClusterFactory來建立一個FlinkLocalCluster
  • LocalClusterFactory這裏使用的是DefaultLocalClusterFactory實現類,它的createLocalCluster方法,直接new了一個FlinkLocalCluster
  • 目前的實現來看,每次調用FlinkLocalCluster.getLocalCluster,都會建立一個新的FlinkLocalCluster,這個在調用的時候是須要注意一下的

FlinkTopology

flink-release-1.6.2/flink-contrib/flink-storm/src/main/java/org/apache/flink/storm/api/FlinkTopology.javaapache

/**
     * Creates a Flink program that uses the specified spouts and bolts.
     * @param stormBuilder The Storm topology builder to use for creating the Flink topology.
     * @return A {@link FlinkTopology} which contains the translated Storm topology and may be executed.
     */
    public static FlinkTopology createTopology(TopologyBuilder stormBuilder) {
        return new FlinkTopology(stormBuilder);
    }

    private FlinkTopology(TopologyBuilder builder) {
        this.builder = builder;
        this.stormTopology = builder.createTopology();
        // extract the spouts and bolts
        this.spouts = getPrivateField("_spouts");
        this.bolts = getPrivateField("_bolts");

        this.env = StreamExecutionEnvironment.getExecutionEnvironment();

        // Kick off the translation immediately
        translateTopology();
    }
  • FlinkTopology提供了一個靜態工廠方法createTopology用來建立FlinkTopology
  • FlinkTopology先保存一下TopologyBuilder,而後經過getPrivateField反射調用getDeclaredField獲取_spouts、_bolts私有屬性而後保存起來,方便後面轉換topology使用
  • 以後先獲取到ExecutionEnvironment,最後就是調用translateTopology進行整個StormTopology的轉換

translateTopology

flink-release-1.6.2/flink-contrib/flink-storm/src/main/java/org/apache/flink/storm/api/FlinkTopology.javaapi

/**
     * Creates a Flink program that uses the specified spouts and bolts.
     */
    private void translateTopology() {

        unprocessdInputsPerBolt.clear();
        outputStreams.clear();
        declarers.clear();
        availableInputs.clear();

        // Storm defaults to parallelism 1
        env.setParallelism(1);

        /* Translation of topology */

        for (final Entry<String, IRichSpout> spout : spouts.entrySet()) {
            final String spoutId = spout.getKey();
            final IRichSpout userSpout = spout.getValue();

            final FlinkOutputFieldsDeclarer declarer = new FlinkOutputFieldsDeclarer();
            userSpout.declareOutputFields(declarer);
            final HashMap<String, Fields> sourceStreams = declarer.outputStreams;
            this.outputStreams.put(spoutId, sourceStreams);
            declarers.put(spoutId, declarer);

            final HashMap<String, DataStream<Tuple>> outputStreams = new HashMap<String, DataStream<Tuple>>();
            final DataStreamSource<?> source;

            if (sourceStreams.size() == 1) {
                final SpoutWrapper<Tuple> spoutWrapperSingleOutput = new SpoutWrapper<Tuple>(userSpout, spoutId, null, null);
                spoutWrapperSingleOutput.setStormTopology(stormTopology);

                final String outputStreamId = (String) sourceStreams.keySet().toArray()[0];

                DataStreamSource<Tuple> src = env.addSource(spoutWrapperSingleOutput, spoutId,
                        declarer.getOutputType(outputStreamId));

                outputStreams.put(outputStreamId, src);
                source = src;
            } else {
                final SpoutWrapper<SplitStreamType<Tuple>> spoutWrapperMultipleOutputs = new SpoutWrapper<SplitStreamType<Tuple>>(
                        userSpout, spoutId, null, null);
                spoutWrapperMultipleOutputs.setStormTopology(stormTopology);

                @SuppressWarnings({ "unchecked", "rawtypes" })
                DataStreamSource<SplitStreamType<Tuple>> multiSource = env.addSource(
                        spoutWrapperMultipleOutputs, spoutId,
                        (TypeInformation) TypeExtractor.getForClass(SplitStreamType.class));

                SplitStream<SplitStreamType<Tuple>> splitSource = multiSource
                        .split(new StormStreamSelector<Tuple>());
                for (String streamId : sourceStreams.keySet()) {
                    SingleOutputStreamOperator<Tuple> outStream = splitSource.select(streamId)
                            .map(new SplitStreamMapper<Tuple>());
                    outStream.getTransformation().setOutputType(declarer.getOutputType(streamId));
                    outputStreams.put(streamId, outStream);
                }
                source = multiSource;
            }
            availableInputs.put(spoutId, outputStreams);

            final ComponentCommon common = stormTopology.get_spouts().get(spoutId).get_common();
            if (common.is_set_parallelism_hint()) {
                int dop = common.get_parallelism_hint();
                source.setParallelism(dop);
            } else {
                common.set_parallelism_hint(1);
            }
        }

        /**
         * 1. Connect all spout streams with bolts streams
         * 2. Then proceed with the bolts stream already connected
         *
         * <p>Because we do not know the order in which an iterator steps over a set, we might process a consumer before
         * its producer
         * ->thus, we might need to repeat multiple times
         */
        boolean makeProgress = true;
        while (bolts.size() > 0) {
            if (!makeProgress) {
                StringBuilder strBld = new StringBuilder();
                strBld.append("Unable to build Topology. Could not connect the following bolts:");
                for (String boltId : bolts.keySet()) {
                    strBld.append("\n  ");
                    strBld.append(boltId);
                    strBld.append(": missing input streams [");
                    for (Entry<GlobalStreamId, Grouping> streams : unprocessdInputsPerBolt
                            .get(boltId)) {
                        strBld.append("'");
                        strBld.append(streams.getKey().get_streamId());
                        strBld.append("' from '");
                        strBld.append(streams.getKey().get_componentId());
                        strBld.append("'; ");
                    }
                    strBld.append("]");
                }

                throw new RuntimeException(strBld.toString());
            }
            makeProgress = false;

            final Iterator<Entry<String, IRichBolt>> boltsIterator = bolts.entrySet().iterator();
            while (boltsIterator.hasNext()) {

                final Entry<String, IRichBolt> bolt = boltsIterator.next();
                final String boltId = bolt.getKey();
                final IRichBolt userBolt = copyObject(bolt.getValue());

                final ComponentCommon common = stormTopology.get_bolts().get(boltId).get_common();

                Set<Entry<GlobalStreamId, Grouping>> unprocessedBoltInputs = unprocessdInputsPerBolt.get(boltId);
                if (unprocessedBoltInputs == null) {
                    unprocessedBoltInputs = new HashSet<>();
                    unprocessedBoltInputs.addAll(common.get_inputs().entrySet());
                    unprocessdInputsPerBolt.put(boltId, unprocessedBoltInputs);
                }

                // check if all inputs are available
                final int numberOfInputs = unprocessedBoltInputs.size();
                int inputsAvailable = 0;
                for (Entry<GlobalStreamId, Grouping> entry : unprocessedBoltInputs) {
                    final String producerId = entry.getKey().get_componentId();
                    final String streamId = entry.getKey().get_streamId();
                    final HashMap<String, DataStream<Tuple>> streams = availableInputs.get(producerId);
                    if (streams != null && streams.get(streamId) != null) {
                        inputsAvailable++;
                    }
                }

                if (inputsAvailable != numberOfInputs) {
                    // traverse other bolts first until inputs are available
                    continue;
                } else {
                    makeProgress = true;
                    boltsIterator.remove();
                }

                final Map<GlobalStreamId, DataStream<Tuple>> inputStreams = new HashMap<>(numberOfInputs);

                for (Entry<GlobalStreamId, Grouping> input : unprocessedBoltInputs) {
                    final GlobalStreamId streamId = input.getKey();
                    final Grouping grouping = input.getValue();

                    final String producerId = streamId.get_componentId();

                    final Map<String, DataStream<Tuple>> producer = availableInputs.get(producerId);

                    inputStreams.put(streamId, processInput(boltId, userBolt, streamId, grouping, producer));
                }

                final SingleOutputStreamOperator<?> outputStream = createOutput(boltId,
                        userBolt, inputStreams);

                if (common.is_set_parallelism_hint()) {
                    int dop = common.get_parallelism_hint();
                    outputStream.setParallelism(dop);
                } else {
                    common.set_parallelism_hint(1);
                }

            }
        }
    }
  • 整個轉換是先轉換spout,再轉換bolt,他們根據的spouts及bolts信息是在構造器裏頭使用反射從storm的TopologyBuilder對象獲取到的
  • flink使用FlinkOutputFieldsDeclarer(它實現了storm的OutputFieldsDeclarer接口)來承載storm的IRichSpout及IRichBolt裏頭配置的declareOutputFields信息,不過要注意的是flink不支持dirct emit;這裏經過userSpout.declareOutputFields方法,將原始spout的declare信息設置到FlinkOutputFieldsDeclarer
  • flink使用SpoutWrapper來包裝spout,將其轉換爲RichParallelSourceFunction類型,這裏對spout的outputStreams的個數是否大於1進行不一樣處理;以後就是將RichParallelSourceFunction做爲StreamExecutionEnvironment.addSource方法的參數建立flink的DataStreamSource,並添加到availableInputs中,而後根據spout的parallelismHit來設置DataStreamSource的parallelism
  • 對於bolt的轉換,這裏維護了unprocessdInputsPerBolt,key爲boltId,value爲該bolt要鏈接的GlobalStreamId及Grouping方式,因爲是使用map來進行遍歷的,所以轉換的bolt可能亂序,若是鏈接的GlobalStreamId存在則進行轉換,而後從bolts中移除,bolt鏈接的GlobalStreamId不在availableInputs中的時候,須要跳過處理下一個,不會從bolts中移除,由於外層的循環條件是bolts的size大於0,就是依靠這個機制來處理亂序
  • 對於bolt的轉換有一個重要的方法就是processInput,它把bolt的grouping轉換爲對spout的DataStream的對應操做(好比shuffleGrouping轉換爲對DataStream的rebalance操做,fieldsGrouping轉換爲對DataStream的keyBy操做,globalGrouping轉換爲global操做,allGrouping轉換爲broadcast操做),以後調用createOutput方法轉換bolt的執行邏輯,它使用BoltWrapper或者MergedInputsBoltWrapper將bolt轉換爲flink的OneInputStreamOperator,而後做爲參數對stream進行transform操做返回flink的SingleOutputStreamOperator,同時將轉換後的SingleOutputStreamOperator添加到availableInputs中,以後根據bolt的parallelismHint對這個SingleOutputStreamOperator設置parallelism

FlinkLocalCluster

flink-storm_2.11-1.6.2-sources.jar!/org/apache/flink/storm/api/FlinkLocalCluster.javaapp

/**
 * {@link FlinkLocalCluster} mimics a Storm {@link LocalCluster}.
 */
public class FlinkLocalCluster {

    /** The log used by this mini cluster. */
    private static final Logger LOG = LoggerFactory.getLogger(FlinkLocalCluster.class);

    /** The Flink mini cluster on which to execute the programs. */
    private FlinkMiniCluster flink;

    /** Configuration key to submit topology in blocking mode if flag is set to {@code true}. */
    public static final String SUBMIT_BLOCKING = "SUBMIT_STORM_TOPOLOGY_BLOCKING";

    public FlinkLocalCluster() {
    }

    public FlinkLocalCluster(FlinkMiniCluster flink) {
        this.flink = Objects.requireNonNull(flink);
    }

    @SuppressWarnings("rawtypes")
    public void submitTopology(final String topologyName, final Map conf, final FlinkTopology topology)
            throws Exception {
        this.submitTopologyWithOpts(topologyName, conf, topology, null);
    }

    @SuppressWarnings("rawtypes")
    public void submitTopologyWithOpts(final String topologyName, final Map conf, final FlinkTopology topology, final SubmitOptions submitOpts) throws Exception {
        LOG.info("Running Storm topology on FlinkLocalCluster");

        boolean submitBlocking = false;
        if (conf != null) {
            Object blockingFlag = conf.get(SUBMIT_BLOCKING);
            if (blockingFlag instanceof Boolean) {
                submitBlocking = ((Boolean) blockingFlag).booleanValue();
            }
        }

        FlinkClient.addStormConfigToTopology(topology, conf);

        StreamGraph streamGraph = topology.getExecutionEnvironment().getStreamGraph();
        streamGraph.setJobName(topologyName);

        JobGraph jobGraph = streamGraph.getJobGraph();

        if (this.flink == null) {
            Configuration configuration = new Configuration();
            configuration.addAll(jobGraph.getJobConfiguration());

            configuration.setString(TaskManagerOptions.MANAGED_MEMORY_SIZE, "0");
            configuration.setInteger(TaskManagerOptions.NUM_TASK_SLOTS, jobGraph.getMaximumParallelism());

            this.flink = new LocalFlinkMiniCluster(configuration, true);
            this.flink.start();
        }

        if (submitBlocking) {
            this.flink.submitJobAndWait(jobGraph, false);
        } else {
            this.flink.submitJobDetached(jobGraph);
        }
    }

    public void killTopology(final String topologyName) {
        this.killTopologyWithOpts(topologyName, null);
    }

    public void killTopologyWithOpts(final String name, final KillOptions options) {
    }

    public void activate(final String topologyName) {
    }

    public void deactivate(final String topologyName) {
    }

    public void rebalance(final String name, final RebalanceOptions options) {
    }

    public void shutdown() {
        if (this.flink != null) {
            this.flink.stop();
            this.flink = null;
        }
    }

    //......
}
  • FlinkLocalCluster的submitTopology方法調用了submitTopologyWithOpts,然後者主要是設置一些參數,調用topology.getExecutionEnvironment().getStreamGraph()根據transformations生成StreamGraph,再獲取JobGraph,而後建立LocalFlinkMiniCluster並start,最後使用LocalFlinkMiniCluster的submitJobAndWait或submitJobDetached來提交整個JobGraph

小結

  • flink經過FlinkTopology對storm提供了必定的兼容性,這對於遷移storm到flink很是有幫助
  • 要在flink上運行storm的topology,主要有幾個步驟,分別是構建storm原生的TopologyBuilder,以後經過FlinkTopology.createTopology(builder)來將StormTopology轉換爲FlinkTopology,最後是經過FlinkLocalCluster(本地模式)或者FlinkSubmitter(遠程提交)的submitTopology方法提交FlinkTopology
  • FlinkTopology是flink兼容storm的核心,它負責將StormTopology轉換爲flink對應的結構,好比使用SpoutWrapper將spout轉換爲RichParallelSourceFunction,而後添加到StreamExecutionEnvironment建立DataStream,把bolt的grouping轉換爲對spout的DataStream的對應操做(好比shuffleGrouping轉換爲對DataStream的rebalance操做,fieldsGrouping轉換爲對DataStream的keyBy操做,globalGrouping轉換爲global操做,allGrouping轉換爲broadcast操做),而後使用BoltWrapper或者MergedInputsBoltWrapper將bolt轉換爲flink的OneInputStreamOperator,而後做爲參數對stream進行transform操做
  • 構建完FlinkTopology以後,就使用FlinkLocalCluster提交到本地執行,或者使用FlinkSubmitter提交到遠程執行
  • FlinkLocalCluster的submitTopology方法主要是經過FlinkTopology做用的StreamExecutionEnvironment生成StreamGraph,經過它獲取JobGraph,而後建立LocalFlinkMiniCluster並start,最後經過LocalFlinkMiniCluster提交JobGraph

doc

相關文章
相關標籤/搜索