Spark Graphx圖計算案例實戰之aggregateMessages求社交網絡中的最大年紀追求者和平均年紀!網絡
Spark Graphx提供了mapReduceTriplets來對圖進行聚合計算,可是1.2之後再也不推薦使用,源代碼以下:ide
@deprecated("use aggregateMessages", "1.2.0") def mapReduceTriplets[A: ClassTag]( mapFunc: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)], reduceFunc: (A, A) => A, activeSetOpt: Option[(VertexRDD[_], EdgeDirection)] = None) : VertexRDD[A]
* Aggregates values from the neighboring edges and vertices of each vertex. The user supplied
* `mapFunc` function is invoked on each edge of the graph, generating 0 or more "messages" to be
* "sent" to either vertex in the edge. The `reduceFunc` is then used to combine the output of
* the map phase destined to each vertex.
*
* This function is deprecated in 1.2.0 because of SPARK-3936.
Use aggregateMessages instead.
*
推薦使用的是aggregateMessages:學習
def aggregateMessages[A: ClassTag]( sendMsg: EdgeContext[VD, ED, A] => Unit, mergeMsg: (A, A) => A, tripletFields: TripletFields = TripletFields.All) : VertexRDD[A] = { aggregateMessagesWithActiveSet(sendMsg, mergeMsg, tripletFields, None) }
並舉了一個簡單的例子:
大數據
* vertex
* {{{
* val rawGraph: Graph[_, _] = Graph.textFile("twittergraph")
* val inDeg: RDD[(VertexId, Int)] =
* rawGraph.aggregateMessages[Int](ctx => ctx.sendToDst(1), _ + _)
* }}}
能夠看見可以進行消息傳遞和聚合操做。spa
案例實戰:求社交網絡中的年紀最大的追求者和追求者的平均年齡:ip
val oldestFollower: VertexRDD[(String,Int)]=userGraph.aggregateMessages[(String, Int)](
triplet => {
triplet.sendToDst(triplet.srcAttr.name, triplet.srcAttr.age)
},
(a, b) => if (a._2 > b._2) a else b
)
oldestFollower.collect.foreach(println(_))
averageAge: VertexRDD[] = userGraph.aggregateMessages[()]( triplet => { triplet.sendToDst(triplet.srcAttr.age) }(ab) => ((a._1 + b._1)(a._2 + b._2)) ).mapValues((idp) => p._2 / p._1) averageAge.collect().foreach((_))
很好很強大啊!源碼
結果以下:it
聚合操做io
**********************************************************function
找出年紀最大的追求者:
(4,(Bob,27))
(1,(David,42))
(6,(Charlie,65))
(2,(Charlie,65))
(3,(Ed,55))
**********************************************************
找出追求者的平均年紀:
(4,27.0)
(1,34.5)
(6,60.0)
(2,60.0)
(3,55.0)
**********************************************************
源碼是最好的學習素材!
王家林老師DT大數據夢工廠學習之路!