一、下載hadoop-eclipse-plugin-2.7.3插件,並解壓java
二、將hadoop-eclipse-plugin-2.7.3.jar拷貝到${ECLIPSE_HOME}下的plugins文件夾,apache
並重啓eclipse,便可出現如下視圖:windows
三、將hadoop-eclipse-plugin-2.7.3下的bin目錄全部文件拷貝到window下的Hadoop目錄下的bin目錄中bash
四、同時將bin目錄下的hadoop.dll拷貝到C:\windows\system32目錄下app
五、eclipse配置hadoop安裝目錄eclipse
六、建立Hadoop Locationoop
七、運行WordCount實例spa
1. 建立輸入目錄input,並上傳數據文件input.txt,不可建立輸出文件夾,否則會報錯。插件
2. 配置運行參數(以下圖),最後點擊run便可code
說明:input指的的文件夾,直接掛在"/"目錄下,與hdfs://192.168.241.129:9000/input對應
3. 輸入結果以下圖
4. 附:WordCount.java源碼
package com.hadoop.example; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class WordCount { public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } } public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { System.setProperty("HADOOP_USER_NAME", "root"); System.setProperty("hadoop.home.dir", "D:/install/hadoop-2.7.3"); // System.setProperty("yarn.resourcemanager.address", "master:8032"); System.setProperty("yarn.resourcemanager.hostname", "master"); Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf, args) .getRemainingArgs(); if (otherArgs.length < 2) { System.err.println("Usage: wordcount <in> [<in>...] <out>"); System.exit(2); } Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); for (int i = 0; i < otherArgs.length - 1; ++i) { FileInputFormat.addInputPath(job, new Path(otherArgs[i])); } FileOutputFormat.setOutputPath(job, new Path( otherArgs[otherArgs.length - 1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
五、可打成Runnable JarFile包運行
#可運行包執行命令:hadoop jar {jar} {input} {output} hadoop jar WordCount.jar hdfs://192.168.241.129:9000/input hdfs://192.168.241.129:9000/output