flume實際生產場景分析

需求:A B兩臺日誌服務器實時生產日誌主要類型爲access.log、nginx.log、web.log,如今要求:
把A、B機器中的access.log、nginx.log、web.log 採集彙總到 C 機器上而後統一收集到 hdfs中,可是在hdfs中要求的目錄爲:
   /source/logs/access/日期/**
   /source/logs/nginx/日期/**
   /source/logs/web/日期/**
場景分析
flume實際生產場景分析nginx

規劃
hadoop01(web01):
    source:access.log 、nginx.log、web.log
    channel:memory
    sink:avro
hadoop02(web02):
    source:access.log 、nginx.log、web.log
    channel:memory
    sink:avro
hadoop03(數據收集):
    source;avro
    channel:memory
    sink:hdfs
配置文件web

#exec_source_avro_sink.properties
#指定各個核心組件
a1.sources = r1 r2 r3
a1.sinks = k1
a1.channels = c1
#r1
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /home/hadoop/flume_data/access.log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
a1.sources.r1.interceptors.i1.key = type
a1.sources.r1.interceptors.i1.value = access

#r2
a1.sources.r2.type = exec
a1.sources.r2.command = tail -F /home/hadoop/flume_data/nginx.log
a1.sources.r2.interceptors = i2
a1.sources.r2.interceptors.i2.type = static
a1.sources.r2.interceptors.i2.key = type
a1.sources.r2.interceptors.i2.value = nginx

#r3
a1.sources.r3.type = exec
a1.sources.r3.command = tail -F /home/hadoop/flume_data/web.log
a1.sources.r3.interceptors = i3
a1.sources.r3.interceptors.i3.type = static
a1.sources.r3.interceptors.i3.key = type
a1.sources.r3.interceptors.i3.value = web

#Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop03
a1.sinks.k1.port = 41414

#Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity = 10000

#Bind the source and sink to the channela1.sources.r1.channels = c1
a1.sources.r2.channels = c1
a1.sources.r3.channels = c1
a1.sinks.k1.channel = c1
#avro_source_hdfs_sink.properties
#定義 agent 名, source、channel、sink 的名稱
a1.sources = r1
a1.sinks = k1
a1.channels = c1

#定義 source
a1.sources.r1.type = avro
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port =41414

#添加時間攔截器
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type=org.apache.flume.interceptor.TimestampInterceptor$Builder

#定義 channels
a1.channels.c1.type = memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity = 10000

#定義 sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path=hdfs://myha01/source/logs/%{type}/%Y%m%d
a1.sinks.k1.hdfs.filePrefix =events
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.writeFormat = Text
#時間類型
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#生成的文件不按條數生成
a1.sinks.k1.hdfs.rollCount = 0
#生成的文件按時間生成
a1.sinks.k1.hdfs.rollInterval = 30
#生成的文件按大小生成
a1.sinks.k1.hdfs.rollSize = 10485760
#批量寫入 hdfs 的個數
a1.sinks.k1.hdfs.batchSize = 20
#flume 操做 hdfs 的線程數(包括新建,寫入等)
a1.sinks.k1.hdfs.threadsPoolSize=10
#操做 hdfs 超時時間
a1.sinks.k1.hdfs.callTimeout=30000

#組裝 source、channel、sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

測試apache

#在hadoop01和 hadoop02上的/home/hadoop/data 有數據文件 access.log、nginx.log、 web.log
#先啓動hadoop03上的flume:(存儲)
flume-ng agent -c conf -f avro_source_hdfs_sink.properties -name a1 -Dflume.root.logger=DEBUG,console
#而後在啓動hadoop01和hadoop02上的命令flume(收集)
flume-ng agent -c conf -f exec_source_avro_sink.properties -name a1 -Dflume.root.logger=DEBUG,console
相關文章
相關標籤/搜索