需求:A B兩臺日誌服務器實時生產日誌主要類型爲access.log、nginx.log、web.log,如今要求:
把A、B機器中的access.log、nginx.log、web.log 採集彙總到 C 機器上而後統一收集到 hdfs中,可是在hdfs中要求的目錄爲:
/source/logs/access/日期/**
/source/logs/nginx/日期/**
/source/logs/web/日期/**
場景分析:
nginx
規劃:
hadoop01(web01):
source:access.log 、nginx.log、web.log
channel:memory
sink:avro
hadoop02(web02):
source:access.log 、nginx.log、web.log
channel:memory
sink:avro
hadoop03(數據收集):
source;avro
channel:memory
sink:hdfs
配置文件:web
#exec_source_avro_sink.properties #指定各個核心組件 a1.sources = r1 r2 r3 a1.sinks = k1 a1.channels = c1 #r1 a1.sources.r1.type = exec a1.sources.r1.command = tail -F /home/hadoop/flume_data/access.log a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = static a1.sources.r1.interceptors.i1.key = type a1.sources.r1.interceptors.i1.value = access #r2 a1.sources.r2.type = exec a1.sources.r2.command = tail -F /home/hadoop/flume_data/nginx.log a1.sources.r2.interceptors = i2 a1.sources.r2.interceptors.i2.type = static a1.sources.r2.interceptors.i2.key = type a1.sources.r2.interceptors.i2.value = nginx #r3 a1.sources.r3.type = exec a1.sources.r3.command = tail -F /home/hadoop/flume_data/web.log a1.sources.r3.interceptors = i3 a1.sources.r3.interceptors.i3.type = static a1.sources.r3.interceptors.i3.key = type a1.sources.r3.interceptors.i3.value = web #Describe the sink a1.sinks.k1.type = avro a1.sinks.k1.hostname = hadoop03 a1.sinks.k1.port = 41414 #Use a channel which buffers events in memory a1.channels.c1.type = memory a1.channels.c1.capacity = 20000 a1.channels.c1.transactionCapacity = 10000 #Bind the source and sink to the channela1.sources.r1.channels = c1 a1.sources.r2.channels = c1 a1.sources.r3.channels = c1 a1.sinks.k1.channel = c1
#avro_source_hdfs_sink.properties #定義 agent 名, source、channel、sink 的名稱 a1.sources = r1 a1.sinks = k1 a1.channels = c1 #定義 source a1.sources.r1.type = avro a1.sources.r1.bind = 0.0.0.0 a1.sources.r1.port =41414 #添加時間攔截器 a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type=org.apache.flume.interceptor.TimestampInterceptor$Builder #定義 channels a1.channels.c1.type = memory a1.channels.c1.capacity = 20000 a1.channels.c1.transactionCapacity = 10000 #定義 sink a1.sinks.k1.type = hdfs a1.sinks.k1.hdfs.path=hdfs://myha01/source/logs/%{type}/%Y%m%d a1.sinks.k1.hdfs.filePrefix =events a1.sinks.k1.hdfs.fileType = DataStream a1.sinks.k1.hdfs.writeFormat = Text #時間類型 a1.sinks.k1.hdfs.useLocalTimeStamp = true #生成的文件不按條數生成 a1.sinks.k1.hdfs.rollCount = 0 #生成的文件按時間生成 a1.sinks.k1.hdfs.rollInterval = 30 #生成的文件按大小生成 a1.sinks.k1.hdfs.rollSize = 10485760 #批量寫入 hdfs 的個數 a1.sinks.k1.hdfs.batchSize = 20 #flume 操做 hdfs 的線程數(包括新建,寫入等) a1.sinks.k1.hdfs.threadsPoolSize=10 #操做 hdfs 超時時間 a1.sinks.k1.hdfs.callTimeout=30000 #組裝 source、channel、sink a1.sources.r1.channels = c1 a1.sinks.k1.channel = c1
測試:apache
#在hadoop01和 hadoop02上的/home/hadoop/data 有數據文件 access.log、nginx.log、 web.log #先啓動hadoop03上的flume:(存儲) flume-ng agent -c conf -f avro_source_hdfs_sink.properties -name a1 -Dflume.root.logger=DEBUG,console #而後在啓動hadoop01和hadoop02上的命令flume(收集) flume-ng agent -c conf -f exec_source_avro_sink.properties -name a1 -Dflume.root.logger=DEBUG,console