關於圖文識別功能相關技術的大體實現

    關於圖文識別功能相關技術的實現html

 

轉載請註明源地址http://www.cnblogs.com/funnyzpc/p/8908906.htmlpython

  上一章,寫的是SSL證書配置,中間折騰了好一會,在此感謝SSL證書發行商的協助;此次我就講講ocr識別的問題,先說說需求來源吧。。。git

  以前由於風控每次須要手動P協議文件和身份證(脫敏),還要識別證件及圖片文件的內容,以爲狠狠狠麻煩,遂就找到了技術總監,技術總監一拍腦殼,額,小鄒啊。。。github

  呃,一開始並沒抱太大但願,不過仍是花了些心思作了些需求實現的調研,怎麼辦 google、duckduckgo、github一路找下來就有了幾個工程了,嘿嘿~,惋惜還沒高興到,沒想到的是這些工程一個比一個坑,不是依賴windows系統組件就是代碼bug不斷,做者們,能用點兒心麼算法

  日夜操勞,加班啊,總算是將幾個工程全都修得能跑起來了,大費周折。。。可貴啊windows

  欸,惋惜效果均不佳;現開始,我總結下一些主流的圖文識別技術,只是淺聊哦。。。網絡

首先,這些工程大體分兩類:機器學習

  一類是純算法,不附帶機器學習功能的,且須要依賴於window系統組件的工程,好比tesseract和tess4j,識別效果能夠說是巨差(可能個人技術很菜的緣由),但有一點兒值得讚許,就是識別結果的格式還算不錯,這類圖文識別的特色大體有以下幾點:學習

  A>工程代碼量較大優化

  B>依賴window組件,須要在window系統下才能運行

  C>識別效果沒法經過學習逐漸優化

  D>識別出來的文字時常亂碼,中文識別亂碼錯別字較多

  E>識別結果一般使用格式化模子來格式化結果,遂,識別結果的格式還算過得去

  一類是基於機器學習(好比Tensorflow)的工程,這些工程良莠不齊,存在插件版本問題,尤爲是python插件,實在在太太太難裝了,在一就是工程大多較爲簡陋,因爲機器學習具備不斷改善的趨勢,這是基於機器學習的圖文識別的最大優點,總結起來,基於機器學習的圖文識別的特色兒大體有以下幾點:

  A>工程比較簡單,代碼量不是不少

  B>依賴的語言插件,如python實在難以安裝

  C>有不少優化的方向,好比使用顯卡,優化算法(卷積神經網絡)來提升識別速度及模型準確度

  D>十分耗費計算機字段,通常識別一頁A4大小的圖片中的內容,(我使用Macbook Pro) 最快也用了二十多秒

  E>識別的結果比較亂,但對於中文,尤爲是圖片較好的中文的文字識別準確率能達到百分之七十網上,可是識別格式和文字準確度不如上者

  F>因爲是基於機器學習,遂須要大量的數據餵養以提升識別的準確率,餵養的數據十分可觀

 

  額,總的來講,後者的優點較大,也是趨勢,好比騰訊QQ的圖片識別還有百度大腦AI這些基本都是基於機器學習,我的以爲,若是投入一個團隊去專門研究開發一個圖文識別的產品,也是比較容易實現的,況且這個方向向前走就是人工智能,儘管如今看起來有些智障...。

  哦,大體總結完了,我就展現下基於tess4j和chinese-ocr這兩項目的實現效果,個人輸入是身份證:

(注意:源圖片是從github上拉下來的,我的作了些簡陋的脫敏處理!)

  下面是基於tess4j實現的結果:

tess4j的實現只能基於windows組件實現,故項目只能在windows下運行,另外tesseract也是windows組件的實現。

  一下是基於chinese-ocr的項目的實現的結果:

chinese-orc是基於python語言+tensorflow的實現,結果一目瞭然,須要說的是,一下幾個也是基於=>

   IITG-Captcha-Solver-OpenCV-TensorFlow:基於Tensorflow實現的驗證碼識別,已調試經過,驗證碼模糊度較高的識別不夠準確
  text-detection-ctpn       :基於Tensorflow實現的圖片識別,未調試經過
  tensorflow-ocr         :基於tensorflow實現的圖片識別,未調試經過
 
因爲github共享的工程良莠不齊,存在插件版本、語言以及系統版本的差別,遂這些項目clone下來後須要修改些bug纔可,這裏簡述下一些大體的問題的解決思路:
  A>對於插件版本下載不了的(我用的是pycharm),建議使用相鄰版本的插件,但有些插件須要爬梯出去纔可下
  
  B>對於部分(例如 test.py)文件跑不起來的,請嘗試着將這個文件放置在工程主目錄下,但同時請注意 import引用的文件(可能須要手動修改)
  C>對於項目出現的主流問題請移步Issues以查找
         嗯,此篇本來在前一天發表的,因爲公司週年慶耽擱了會兒,最後,我把上面幾個工程的打包文件共享下(包含我修改過bug的),有須要的請自行下載,若有疑問請電郵或留言
 
工程下載連接: https://pan.baidu.com/s/1B2Eyak8zwdAldA0NBfmlvw
工程下載密碼: r2av
相關文章
相關標籤/搜索