OpenCV 3.2 Tracking 物體跟蹤

跟蹤就是在連續視頻幀中定位物體,一般的跟蹤算法包括如下幾類:html

1. Dense Optical Flow 稠密光流算法

2. Sparse Optical Flow 稀疏光流 最典型的如KLT算法(Kanade-Lucas-Tomshi)ide

3. Kalman Filterspa

4. Meanshift and Camshiftcode

5. Multiple object tracking視頻

須要注意跟蹤和識別的區別,一般來講跟蹤能夠比識別快不少,且跟蹤失敗了能夠找回來。htm

OpenCV 3之後實現了不少追蹤算法,都實如今contrib模塊中,安裝參考blog

下面code實現了跟蹤筆記本攝像頭畫面中的固定區域物體,能夠選用OpenCV實現的算法ip

#include <opencv2/opencv.hpp>
#include <opencv2/tracking.hpp>

using namespace std;
using namespace cv;

int main(int argc, char** argv){
  // can change to BOOSTING, MIL, KCF (OpenCV 3.1), TLD, MEDIANFLOW, or GOTURN (OpenCV 3.2)
  Ptr<Tracker> tracker = Tracker::create("MEDIANFLOW"); 
  VideoCapture video(0);
  if(!video.isOpened()){
    cerr << "cannot read video!" << endl;
    return -1;
  }
  Mat frame;
  video.read(frame);
  Rect2d box(270, 120, 180, 260);
  tracker->init(frame, box);
  while(video.read(frame)){
    tracker->update(frame, box);
    rectangle(frame, box, Scalar(255, 0, 0), 2, 1);
    imshow("Tracking", frame);
    int k=waitKey(1);
    if(k==27) break;
  }
}

 着重瞭解效果較好的KCF(Kernelized Correlation Filters)和經典的KLT算法get

相關文章
相關標籤/搜索