首發於 https://magicly.me/hpc-julia-2/python
接上一篇:讓代碼飛起來——高性能 Julia 學習筆記(一), 繼續整理高性能 Julia 學習筆記。git
Julia 中 Number 的 size 就跟 C 語言裏面同樣, 直接依賴於底層的 CPU/OS, 32 位 OS 上 integer 默認是 32 位, 64 位 OS 上 integer 默認是 64 位。github
能夠用bitstring
查看 number 的二進制表示:算法
julia > bitstring(3) "0000000000000000000000000000000000000000000000000000000000000011" julia > bitstring(-3) "1111111111111111111111111111111111111111111111111111111111111101"
有時候數字可能會被 boxed,Julia 的 compiler 會自動 boxing/unboxing。數組
Int64 和 Int32 都只能表示特定的整數範圍, 超過範圍會 overflow。安全
julia> typemax(Int64) 9223372036854775807 julia> bitstring(typemax(Int64)) "0111111111111111111111111111111111111111111111111111111111111111" julia> typemin(Int64) -9223372036854775808 julia> bitstring(typemin(Int64)) "1000000000000000000000000000000000000000000000000000000000000000" julia> typemax(Int64) + 1 -9223372036854775808 julia> typemin(Int64) - 1 9223372036854775807
若是要表示任意精度的話, 能夠用BitInt
。分佈式
julia> big(typemax(Int64)) + 1 9223372036854775808
float point 遵循IEEE 754標準。函數
julia> bitstring(1.5) "0011111111111000000000000000000000000000000000000000000000000000" julia> bitstring(-1.5) "1011111111111000000000000000000000000000000000000000000000000000"
無符號整數 Unsigned integer 能夠用 UInt64 和 UInt32 表示, 不一樣類型能夠轉, 可是若是超出可表示範圍會報錯。oop
julia> UInt64(UInt32(1)) 0x0000000000000001 julia> UInt32(UInt64(1)) 0x00000001 julia> UInt32(typemax(UInt64)) ERROR: InexactError: trunc(UInt32, 18446744073709551615) Stacktrace: [1] throw_inexacterror(::Symbol, ::Any, ::UInt64) at ./boot.jl:567 [2] checked_trunc_uint at ./boot.jl:597 [inlined] [3] toUInt32 at ./boot.jl:686 [inlined] [4] UInt32(::UInt64) at ./boot.jl:721 [5] top-level scope at none:0
有時候不須要考慮是否溢出, 能夠直接用%
符號取低位, 速度還更快:佈局
julia> (typemax(UInt64) - 1) % UInt32 0xfffffffe
精度和效率平衡
有時候爲了更高的效率, 可使用@fastmath
宏, 它會放寬一些限制, 包括檢查 NaN 或 Infinity 等, 相似於 GCC 中的-ffast-math
編譯選項。
julia> function sum_diff(x) n = length(x); d = 1/(n-1) s = zero(eltype(x)) s = s + (x[2] - x[1]) / d for i = 2:length(x)-1 s = s + (x[i+1] - x[i+1]) / (2*d) end s = s + (x[n] - x[n-1])/d end sum_diff (generic function with 1 method) julia> function sum_diff_fast(x) n=length(x); d = 1/(n-1) s = zero(eltype(x)) @fastmath s = s + (x[2] - x[1]) / d @fastmath for i = 2:n-1 s = s + (x[i+1] - x[i+1]) / (2*d) end @fastmath s = s + (x[n] - x[n-1])/d end sum_diff_fast (generic function with 1 method) julia> t=rand(2000); julia> sum_diff(t) 1124.071808538789 julia> sum_diff_fast(t) 1124.0718085387887 julia> using BenchmarkTools julia> @benchmark sum_diff(t) BenchmarkTools.Trial: memory estimate: 16 bytes allocs estimate: 1 -------------- minimum time: 4.447 μs (0.00% GC) median time: 4.504 μs (0.00% GC) mean time: 4.823 μs (0.00% GC) maximum time: 17.318 μs (0.00% GC) -------------- samples: 10000 evals/sample: 7 julia> @benchmark sum_diff_fast(t) BenchmarkTools.Trial: memory estimate: 16 bytes allocs estimate: 1 -------------- minimum time: 574.951 ns (0.00% GC) median time: 580.831 ns (0.00% GC) mean time: 621.044 ns (1.04% GC) maximum time: 65.017 μs (99.06% GC) -------------- samples: 10000 evals/sample: 183
差別仍是蠻大的, 差很少 8 倍差距! 咱們能夠用macroexpand
看看宏展開的代碼:
julia> ex = :(@fastmath for i in 2:n-1 s = s + (x[i+1] - x[i+1]) / (2*d) end) :(#= REPL[57]:1 =# @fastmath for i = 2:n - 1 #= REPL[57]:2 =# s = s + (x[i + 1] - x[i + 1]) / (2d) end) julia> macroexpand(Main, ex) :(for i = 2:(Base.FastMath).sub_fast(n, 1) #= REPL[57]:2 =# s = (Base.FastMath).add_fast(s, (Base.FastMath).div_fast((Base.FastMath).sub_fast(x[(Base.FastMath).add_fast(i, 1)], x[(Base.FastMath).add_fast(i, 1)]), (Base.FastMath).mul_fast(2, d))) end)
能夠看到, 主要是把普通的加減乘除換成了Base.FastMath
中的方法。
本章最後介紹了K-B-N
求和減小偏差,以及 Subnormal numbers, 感受都是科學計算裏面纔會用到的, 暫時沒管。
科學計算以及人工智能裏面有大量向量、矩陣運算, 在 Julia 裏都直接對應到 Array。 Vector 和 Matrix 其實就是 Array 的特例:
julia> Vector Array{T,1} where T julia> Matrix Array{T,2} where T
即 Vector 是一維數組, Matrix 是二維數組。從這裏也能夠看出, Julia 中類型的參數類型能夠是具體的 value, 好比這裏的 1 和 2。
Julia 中 Array 數據是連續存放的, 以下圖:
跟存放指針相比好處是少了一次內存訪問, 而且能夠更好地利用 CPU 的 pipeline 和 cache,以及 SIMD。
Julia 中多維數組是按列優先存儲的(相似 Matlab 和 Fortran),這點跟 C 語言中不同:
按照數據在內存中的佈局來讀取數據, 能顯著提升效率。
julia> function col_iter(x) s=zero(eltype(x)) for i = 1:size(x, 2) for j = 1:size(x, 1) s = s + x[j, i] ^ 2 x[j, i] = s end end end col_iter (generic function with 1 method) julia> function row_iter(x) s=zero(eltype(x)) for i = 1:size(x, 1) for j = 1:size(x, 2) s = s + x[i, j] ^ 2 x[i, j] = s end end end row_iter (generic function with 1 method) julia> a = rand(1000, 1000); julia> @benchmark row_iter(a) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 2.217 ms (0.00% GC) median time: 2.426 ms (0.00% GC) mean time: 2.524 ms (0.00% GC) maximum time: 11.723 ms (0.00% GC) -------------- samples: 1974 evals/sample: 1 julia> @benchmark col_iter(a) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 815.984 μs (0.00% GC) median time: 910.121 μs (0.00% GC) mean time: 917.850 μs (0.00% GC) maximum time: 1.292 ms (0.00% GC) -------------- samples: 5416 evals/sample: 1
Julia runtime 會對 array 訪問作 bound 判斷, 看是否超出邊界。 超出邊界的訪問會致使不少 bugs,甚至是安全問題。 另外一方面, bound check 會帶來額外的開銷,若是你能很肯定不會越界, 那能夠用@inbound 宏告訴 Julia 不要作 bound check, 效率會提升很多。
julia> function prefix_bounds(a, b) for i = 2:size(a, 1) a[i] = b[i-1] + b[i] end end prefix_bounds (generic function with 1 method) julia> function prefix_inbounds(a, b) @inbounds for i = 2:size(a, 1) a[i] = b[i-1] + b[i] end end prefix_inbounds (generic function with 1 method) julia> a = rand(1000); julia> b = rand(1000); julia> @benchmark prefix_bounds(a, b) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 742.360 ns (0.00% GC) median time: 763.264 ns (0.00% GC) mean time: 807.497 ns (0.00% GC) maximum time: 1.968 μs (0.00% GC) -------------- samples: 10000 evals/sample: 125 julia> @benchmark prefix_inbounds(a, b) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 179.294 ns (0.00% GC) median time: 181.826 ns (0.00% GC) mean time: 185.124 ns (0.00% GC) maximum time: 635.909 ns (0.00% GC) -------------- samples: 10000 evals/sample: 690
慎用@inbound!!! 最好是限制 loop 直接依賴於 array 長度, 好比:for i in 1:length(array)
這種形式。
能夠在啓動的時候加上--check-bounds=yes/no
來所有開啓或者關閉(優先級高於@inbound 宏)bound check! 再說一次, 慎用!
Julia 內置了不少操做 Array 的函數, 通常都提供兩個版本, 注意可變和不可變版本差別很大!!!
julia> a = rand(1000); julia> @benchmark sort(a) BenchmarkTools.Trial: memory estimate: 7.94 KiB allocs estimate: 1 -------------- minimum time: 16.050 μs (0.00% GC) median time: 17.493 μs (0.00% GC) mean time: 18.933 μs (0.00% GC) maximum time: 726.416 μs (0.00% GC) -------------- samples: 10000 evals/sample: 1 julia> @benchmark sort!(a) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 4.868 μs (0.00% GC) median time: 4.997 μs (0.00% GC) mean time: 5.282 μs (0.00% GC) maximum time: 13.772 μs (0.00% GC) -------------- samples: 10000 evals/sample: 7
咱們能夠看到, 不可變版本sort
不管時間仍是內存佔用和分配上都比可變版本sort!
高。 這很容易理解, 不可變版本須要 clone 一份數據出來,而不是直接修改參數。 根據須要選擇最適合的版本。
相似的,合理利用預分配,能夠有效下降時間和內存佔用。
julia> function xpow(x) return [x x^2 x^3 x^4] end xpow (generic function with 1 method) julia> function xpow_loop(n) s= 0 for i = 1:n s = s + xpow(i)[2] end s end xpow_loop (generic function with 1 method) julia> @benchmark xpow_loop(1_000_000) BenchmarkTools.Trial: memory estimate: 167.84 MiB allocs estimate: 4999441 -------------- minimum time: 68.342 ms (4.11% GC) median time: 70.378 ms (5.21% GC) mean time: 71.581 ms (6.04% GC) maximum time: 120.430 ms (39.92% GC) -------------- samples: 70 evals/sample: 1 julia> function xpow!(result::Array{Int, 1}, x) @assert length(result) == 4 result[1] = x result[2] = x^2 result[3] = x^3 result[4] = x^4 end xpow! (generic function with 1 method) julia> function xpow_loop_noalloc(n) r = [0, 0, 0, 0] s= 0 for i = 1:n xpow!(r, i) s = s + r[2] end s end xpow_loop_noalloc (generic function with 1 method) julia> @benchmark xpow_loop_noalloc(1_000_000) BenchmarkTools.Trial: memory estimate: 112 bytes allocs estimate: 1 -------------- minimum time: 7.314 ms (0.00% GC) median time: 7.486 ms (0.00% GC) mean time: 7.599 ms (0.00% GC) maximum time: 9.580 ms (0.00% GC) -------------- samples: 658 evals/sample: 1
Julia 中作 Array slicing 很容易,相似 python 的語法:
julia> a = collect(1:100); julia> a[1:10] 10-element Array{Int64,1}: 1 2 3 4 5 6 7 8 9 10
語法容易使用很容易形成濫用, 致使性能問題, 由於:array slicing 會 copy 一個副本! 咱們來計算一個矩陣的每列的和, 簡單實現以下:
julia> function sum_vector(x::Array{Float64, 1}) s = 0.0 for i = 1:length(x) s = s + x[i] end return s end sum_vector (generic function with 1 method) julia> function sum_cols_matrix(x::Array{Float64, 2}) num_cols = size(x, 2) s = zeros(num_cols) for i = 1:num_cols s[i] = sum_vector(x[:, i]) end return s end sum_cols_matrix (generic function with 1 method) julia> t = rand(1000, 1000); julia> @benchmark sum_cols_matrix(t) BenchmarkTools.Trial: memory estimate: 7.76 MiB allocs estimate: 1001 -------------- minimum time: 1.703 ms (0.00% GC) median time: 2.600 ms (0.00% GC) mean time: 2.902 ms (19.10% GC) maximum time: 40.978 ms (94.27% GC) -------------- samples: 1719 evals/sample: 1
x[:, j]
是取第 j 列的全部元素。 算法很簡單, 定義一個函數sum_vector
計算向量的和, 而後在sum_cols_matrix
中取每一列傳過去。
因爲x[:, j]
這樣 slicing 會 copy 元素, 因此內存佔用和分配都比較大。 Julia 提供了view
函數,能夠複用父數組的元素而不是 copy, 具體用法能夠參考https://docs.julialang.org/en... 。
因爲view
返回的是SubArray類型, 因此咱們先修改一下sum_vector
的參數類型爲AbstractArray
:
julia> function sum_vector2(x::AbstractArray) s = 0.0 for i = 1:length(x) s = s + x[i] end return s end sum_vector2 (generic function with 1 method) julia> function sum_cols_matrix_views(x::Array{Float64, 2}) num_cols = size(x, 2) s = zeros(num_cols) for i = 1:num_cols s[i] = sum_vector2(view(x, :, i)) end return s end sum_cols_matrix_views (generic function with 1 method) julia> julia> @benchmark sum_cols_matrix_views(t) BenchmarkTools.Trial: memory estimate: 7.94 KiB allocs estimate: 1 -------------- minimum time: 812.209 μs (0.00% GC) median time: 883.884 μs (0.00% GC) mean time: 897.888 μs (0.00% GC) maximum time: 6.552 ms (0.00% GC) -------------- samples: 5474 evals/sample: 1
能夠看到,提高仍是蠻大的。
SIMD全稱Single Instruction Multiple Data, 是現代 CPU 的特性, 能夠一條指令操做多條數據。 來加兩個向量試試:
julia> x = zeros(1_000_000); y = rand(1_000_000); z = rand(1_000_000); julia> function sum_vectors!(x, y, z) n = length(x) for i = 1:n x[i] = y[i] + z[i] end end sum_vectors! (generic function with 1 method) julia> function sum_vectors_inbounds!(x, y, z) n = length(x) @inbounds for i = 1:n x[i] = y[i] + z[i] end end sum_vectors_inbounds! (generic function with 1 method) julia> function sum_vectors_inbounds_simd!(x, y, z) n = length(x) @inbounds @simd for i = 1:n x[i] = y[i] + z[i] end end sum_vectors_inbounds_simd! (generic function with 1 method) julia> @benchmark sum_vectors!(x, y, z) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 1.117 ms (0.00% GC) median time: 1.156 ms (0.00% GC) mean time: 1.174 ms (0.00% GC) maximum time: 1.977 ms (0.00% GC) -------------- samples: 4234 evals/sample: 1 julia> @benchmark sum_vectors_inbounds!(x, y, z) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 1.118 ms (0.00% GC) median time: 1.148 ms (0.00% GC) mean time: 1.158 ms (0.00% GC) maximum time: 1.960 ms (0.00% GC) -------------- samples: 4294 evals/sample: 1 julia> @benchmark sum_vectors_inbounds_simd!(x, y, z) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 1.118 ms (0.00% GC) median time: 1.145 ms (0.00% GC) mean time: 1.155 ms (0.00% GC) maximum time: 2.080 ms (0.00% GC) -------------- samples: 4305 evals/sample: 1
這個測試結果, 不管用@inbounds
仍是@simd
,都沒有提速(難道 Julia 如今默認會使用 SIMD?), 測試了幾回都不行。 另外, 我在測試https://github.com/JuliaCompu... 的時候, 也發現有沒有 simd 差異不大, 若有知道緣由的童鞋歡迎留言告知, 很是謝謝。
另外說Yeppp這個包也能提升速度, 尚未測試。
若是咱們設計的函數給別人用, 那麼 API 會設計的比較通用(好比參數設計成 AbstractArray), 可能會接受各類類型的 Array,這時候須要當心如何遍歷數組。
有兩種 indexing 方式。 一種是 linear indexing, 好比是一個三維 array, 每維度 10 個元素, 則能夠用 x[1], x[2], ..., x[1000]連續地訪問數組。 第二種叫 cartesian indexing, 訪問方式爲 x[i, j, k]。 某些數組不是連續的(好比 view 生成的 SubArray),這時候用 cartesian indexing 訪問會比用 linear indexing 訪問快, 由於 linear indexing 須要除法轉化成每一維的下標。 通用代碼通常會用 linear indexing, 這就有可能致使性能問題。
julia> function mysum_linear(a::AbstractArray) s=zero(eltype(a)) for i = 1:length(a) s=s+a[i] end return s end mysum_linear (generic function with 1 method) julia> mysum_linear(1:1000000) 500000500000 julia> mysum_linear(reshape(1:1000000, 100, 100, 100)) 500000500000 julia> mysum_linear(reshape(1:1000000, 1000, 1000)) 500000500000 julia> mysum_linear(view(reshape(1:1000000, 1000, 1000), 1:500, 1:500) ) 62437625000 julia> @benchmark mysum_linear(1:1000000) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 1.380 ns (0.00% GC) median time: 1.426 ns (0.00% GC) mean time: 1.537 ns (0.00% GC) maximum time: 13.475 ns (0.00% GC) -------------- samples: 10000 evals/sample: 1000 julia> @benchmark mysum_linear(reshape(1:1000000, 1000, 1000)) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 1.379 ns (0.00% GC) median time: 1.392 ns (0.00% GC) mean time: 1.482 ns (0.00% GC) maximum time: 23.089 ns (0.00% GC) -------------- samples: 10000 evals/sample: 1000 julia> @benchmark mysum_linear(view(reshape(1:1000000, 1000, 1000), 1:500, 1:500)) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 1.016 ms (0.00% GC) median time: 1.047 ms (0.00% GC) mean time: 1.071 ms (0.00% GC) maximum time: 2.211 ms (0.00% GC) -------------- samples: 4659 evals/sample: 1
能夠看到最後一次測試, 元素總數更少了, 可是時間更長, 緣由就是數組不是連續的, 可是又用了 linear indexing。 最簡單的解決方法是直接迭代元素, 而不是迭代下標。
julia> function mysum_in(a::AbstractArray) s = zero(eltype(a)) for i in a s=s+ i end end mysum_in (generic function with 1 method) julia> @benchmark mysum_in(view(reshape(1:1000000, 1000, 1000), 1:500, 1:500)) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 224.538 μs (0.00% GC) median time: 238.493 μs (0.00% GC) mean time: 246.847 μs (0.00% GC) maximum time: 413.477 μs (0.00% GC) -------------- samples: 10000 evals/sample: 1
能夠看到, 跟 linear indexing 相比, 效率是 4 倍多。 可是若是咱們須要下標怎麼辦呢?能夠用eachindex()
方法,每一種 array 都會定義一個優化過的eachindex()
方法:
julia> function mysum_eachindex(a::AbstractArray) s = zero(eltype(a)) for i in eachindex(a) s = s + a[i] end end mysum_eachindex (generic function with 1 method) julia> @benchmark mysum_eachindex(view(reshape(1:1000000, 1000, 1000), 1:500, 1:500)) BenchmarkTools.Trial: memory estimate: 0 bytes allocs estimate: 0 -------------- minimum time: 243.295 μs (0.00% GC) median time: 273.168 μs (0.00% GC) mean time: 285.002 μs (0.00% GC) maximum time: 4.191 ms (0.00% GC) -------------- samples: 10000 evals/sample: 1
經過這兩篇文章介紹, 咱們基本上掌握了 Julia 高性能的方法。 若是還不夠, 那就只能求助於並行和分佈式了, 等着咱們下一篇介紹吧。
歡迎加入知識星球一塊兒分享討論有趣的技術話題。