Given two words (beginWord and endWord), and a dictionary's word list, find the length of shortest transformation sequence from beginWord to endWord, such that:c++
Only one letter can be changed at a timespa
Each intermediate word must exist in the word listcode
For example,orm
Given:
beginWord ="hit"
endWord ="cog"
wordList =["hot","dot","dog","lot","log"]
As one shortest transformation is"hit" -> "hot" -> "dot" -> "dog" -> "cog"
,
return its length5
.remNote:字符串
Return 0 if there is no such transformation sequence.get
All words have the same length.it
All words contain only lowercase alphabetic characters.io
典型的BFS題。一層一層的找,分別對應修改一個字符,兩個字符,三個字符...直至發現結尾字符串, 注意用一個Set寸已經訪問過的字符串,避免重複。form
time: O(n), space: O(n)
public class Solution { public int ladderLength(String beginWord, String endWord, Set<String> wordList) { Queue<String> q = new LinkedList<String>(); q.add(beginWord); Set<String> visited = new HashSet<String>(); visited.add(beginWord); int level = 0; while (!q.isEmpty()) { int len = q.size(); level++; for (int i = 0; i < len; i++) { String word = q.remove(); for (int j = 0; j < word.length(); j++) { char[] chars = word.toCharArray(); for (char c = 'a'; c <= 'z'; c++) { chars[j] = c; String nextWord = new String(chars); if (nextWord.equals(endWord)) { return level + 1; } if (!visited.contains(nextWord) && wordList.contains(nextWord)) { q.add(nextWord); visited.add(nextWord); } } } } } return 0; } }
Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformation sequence(s) from beginWord to endWord, such that:
Only one letter can be changed at a time
Each intermediate word must exist in the word list
For example,
Given:
beginWord ="hit"
endWord ="cog"
wordList =["hot","dot","dog","lot","log"]
Return[ ["hit","hot","dot","dog","cog"], ["hit","hot","lot","log","cog"] ]Note:
All words have the same length.
All words contain only lowercase alphabetic characters.
若是要返回全部的結果,問題變複雜了些。由於用BFS相對於DFS的劣勢就是不方便存儲結果。這種須要返回全部結果的,仍是應該從DFS考慮,可是直接應用DFS複雜度會很高,由於這道題咱們只要知道結尾就行了,不用繼續往下搜。
因此問題就轉化成怎樣用DFS的同時又能夠限制DFS的深度,因此咱們能夠BFS與DFS結合。先用BFS搜到結尾字符串,而後把中途全部的字符串及其跟起始字符的edit distance存在一個map裏。這樣的話,咱們就能夠從結尾字符串開始DFS,只有Map內的字符串才考慮繼續DFS,直至搜到起始字符。
注意這裏有個小技巧,就是爲何不從起始字符串開始DFS直至搜到結尾字符串,而是反過來。這裏能夠腦子裏想像一個圖,若是從起始字符串開始搜,到最後一層的話會有不少無效搜索,由於那層咱們只須要找到結尾字符串,那麼多無效的搜索到最一層太浪費時間。反之,若是咱們從結尾字符串開始DFS, 咱們把起始層控制在一個字符串,整個圖先愈來愈寬,而後愈來愈窄直到起始字符串,而非一直愈來愈寬直到結尾字符串那層。
time: O(n), space: O(n)
public class Solution { public List<List<String>> findLadders(String beginWord, String endWord, Set<String> wordList) { Map<String, Integer> distMap = new HashMap<String, Integer>(); getDistance(beginWord, endWord, wordList, distMap); List<List<String>> res = new ArrayList<List<String>>(); dfs(res, new ArrayList<String>(), distMap, wordList, endWord, beginWord); return res; } public void dfs(List<List<String>> res, List<String> cur, Map<String, Integer> distMap, Set<String> wordList, String word, String des) { if (word.equals(des)) { List<String> list = new ArrayList<String>(cur); list.add(des); Collections.reverse(list); res.add(list); return; } cur.add(word); for (int i = 0; i < word.length(); i++) { char[] chars = word.toCharArray(); for (char c = 'a'; c <= 'z'; c++) { chars[i] = c; String nextWord = new String(chars); // 不只字典中含有,兩字符串也是要在路徑的相鄰位置即距離差1 if (distMap.containsKey(nextWord) && distMap.get(nextWord) == distMap.get(word) - 1) { dfs(res, cur, distMap, wordList, nextWord, des); } } } cur.remove(cur.size() - 1); } // 用Word Ladder I的方法把候選字符串及其距離存入map,縮小DFS範圍。 public void getDistance(String beginWord, String endWord, Set<String> wordList, Map<String, Integer> distMap) { distMap.put(beginWord, 1); Queue<String> q = new LinkedList<String>(); q.add(beginWord); while (!q.isEmpty()) { String word = q.remove(); for (int j = 0; j < word.length(); j++) { char[] chars = word.toCharArray(); for (char c = 'a'; c <= 'z'; c++) { chars[j] = c; String nextWord = new String(chars); if (nextWord.equals(endWord)) { distMap.put(nextWord, distMap.get(word) + 1); return; } if (wordList.contains(nextWord) && !distMap.containsKey(nextWord)) { distMap.put(nextWord, distMap.get(word) + 1); q.add(nextWord); } } } } } }